We investigated the joint effect of employees’ emotional exhaustion, transactional leadership, and leader–member exchange (LMX) on employees’ affective commitment and in-role performance. With the inclusion of the antecedents and the consequences of affective commitment, we constructed a comprehensive framework for examining how employees’ organizational affective commitment and emotional exhaustion jointly affected their in-role performance. Using the stimuli theory, vulnerability–stress theory, and job demands–resources model, we tested hypotheses regarding the 3-way interaction effects of the independent and moderating factors with 332 employees of a South Korean firm. All hypotheses were supported. We concluded that employees’ in-role performance could be poor when emotionally exhausted employees are working with a leader whose style is transactional and where there is high LMX.

Keywords: organizational affective commitment, leader–member exchange, in-role performance, burnout, transactional leadership, emotional exhaustion.
Topolnytsky, 2002). OAC is critical because it is intimately linked with employee turnover, absenteeism, organizational citizenship behavior, and job performance (Meyer et al., 2002). Thanacoody, Newman, and Fuchs (2014) found that OAC mediated the negative relationship between pay satisfaction and turnover. Although antecedents and consequences of OAC have been widely investigated, to our knowledge, few researchers have considered both antecedents and consequences simultaneously in one model. In this study, we have examined both the antecedents and consequences of OAC.

One of the most frequently studied antecedents of OAC is leader–member exchange (LMX; Meyer et al., 2002). In a literature review of 23 studies, Wayne et al. (2009) found a generally positive relationship between LMX and OAC. According to Hackman’s (1976) observation, two types of stimuli from the external environment—discretionary and ambient—influence employees’ affective states, such as OAC. In this study, we considered a discretionary stimulus (LMX) and an ambient stimulus, transactional leadership (TAL) simultaneously as the external environment. We selected TAL as a leadership style, on the basis of Clark and Mills’ (1979, 1993) relationship theory, which is based on a distinction between communal and exchange relationships. Unlike other leadership styles, by definition, TAL conflicts with LMX by strengthening both these fundamentally different relationships, and this two-directional strengthening would be regarded as an employee’s psychosocial stress, because of conflicting information from the organization. In addition, according to the vulnerability–stress model (Zubin & Spring, 1977), people’s abnormal behavior arises from interactions between internal vulnerability and external psychosocial stress.

A frequently studied consequence of OAC is in-role performance (Meyer et al., 2002), which refers to officially required outcomes and behaviors that directly serve the organization’s goals (Motowidlo & Van Scotter, 1994). The in-role performance of employees is, thus, a core issue for organizations and as a consequence of OAC has important implications for employees and their organizations. As a result, there has been much investigation on the relationship between OAC and in-role performance, wherein a generally positive relationship has been confirmed. In addition, there are indications that employees’ internal or external situations could moderate their relationship between OAC and in-role performance (Meyer et al., 2002). In this study, we have regarded emotional exhaustion (EE) as an employee’s internal vulnerability. Emotionally exhausted employees can no longer perform their tasks. Thus, their in-role performance would decline (Bakker, Demerouti, & Verbeke, 2004). According to the job demands–resources model (Demerouti, Bakker, Nachreiner, & Schaufeli, 2001), EE and OAC are simultaneously influenced by job demands and job resources in
opposite ways. Therefore, the relationship between OAC and in-role performance must involve EE.

We constructed a comprehensive framework for examining how employees’ internal and external situations jointly affect their OAC. Specifically, we considered three factors in an employee’s situation: (a) LMX as an antecedent of OAC; (b) TAL, which could affect an employee’s external psychosocial stress with LMX; and (c) EE, as an employee’s internal vulnerability. Also, we examined how employees’ OAC and EE jointly affect their in-role performance, by including the consequences of OAC.

Literature Review and Hypotheses

Hackman’s Stimuli Theory

According to Hackman’s (1976) theoretical integration of group influence literature, groups have a pervasive and substantial impact on the attitudes of individuals in an organization. Hackman argued that groups control many of the stimuli that affect individual’s attitudes. Stimuli are those aspects of an individual’s environment that can be attended by that person and that potentially can influence his or her attitude (Hackman, 1976). Hackman divided the stimuli into two categories: (a) *ambient stimuli*, which pervade the group setting and are potentially available to all group members, who will normally be exposed to them as a regular part of their group’s selected activities; and (b) *discretionary stimuli*, which are transmitted selectively to individual group members at their peers’ discretion. Both types of stimuli have a strong effect on employees’ informational states, affective states, and behavior. Wang and Howell (2012), for example, regarded leaders’ transformational leadership style and leader identification as discretionary stimuli, as they are directed at a specific team member rather than at the team as a whole. We proposed that the two classes of stimuli would influence and shape the external condition of employees’ OAC through different mechanisms.

Leader–Member Exchange Theory and Transactional Leadership

Leader–member exchange is the quality of the relationship that develops between an employee and a supervisor (Liden, Sparrowe, & Wayne, 1997). According to this theory, because of time pressures, leaders establish a special relationship with a small group of their followers. Thus, leaders categorize their followers as either in-group or out-group. These distinct relationships are relatively stable over time. Although Wayne et al. (2009) reported that LMX and OAC have a generally positive relationship, Gerstner and Day (1997) reported in a meta-analysis an unexplained variation in the strength of the relationship.
As LMX is regarded as a discretionary stimulus (Choi, Price, & Vinokur, 2003; Hackman, 1976), we have also regarded LMX as a discretionary stimulus.

Employees frequently encounter a transactional style of leadership in business and industry (Yammarino & Bass, 1990). In contrast to transformational leadership, transactional leadership is defined as leadership that supports the status quo through mutual leader and follower self-interests (Bass & Avolio, 2000). The leader rewards followers positively when they follow his or her directions and meet his or her expectations. If followers fail to comply with the leader’s orders, the consequence can be negative, like punitive action. Overall, a leader’s transactional behavior, such as contingent reward, has been found to be positively correlated with follower attitudes and performance (Waldman, Bass, & Yammarino, 1990). As TAL pervades the group setting and is available to all group members, we regarded TAL as an ambient stimulus.

Relationship Theory

Clark and Mills (1979, 1993) distinguished between two fundamentally different types of relationships, namely, communal and exchange, that appear in different contexts and are governed by different norms. A communal relationship is a relationship in which individuals feel a special responsibility for one another and give and receive according to the principle of need. A communal relationship is based on a sense of sameness and the family-like sharing of a common identity (Fiske, 1992). An exchange relationship is one in which individuals feel little responsibility toward one another and in which giving and receiving are governed by concerns about equity and reciprocity.

As we have regarded LMX as a discretionary stimulus and TAL as an ambient stimulus, in this study, we posited that high-quality LMX would strengthen the communal relationship. This means that followers share an intimate relationship with the leader. In contrast, we posited that TAL would strengthen the exchange relationship, because TAL is also based on an exchange process. We believe that is difficult to determine whether or not communal or exchange relationships are better for the relationship between employees and the organization. However, followers can feel external psychosocial stress when their transactional leader strengthens both relationships simultaneously. This can happen when the leader exhibits contingent reward behavior in an exchange relationship, but also divides followers into an in-group and out-group, resulting in high LMX and conflicting messages to followers. Conflicting communication is generally related to stressful tension (Bugental, Kaswan, & Love, 1970). Followers in a high-quality LMX relationship will attempt to strengthen the communal relationship with their leader, with whom they have frequent communication because they are in the in-group. However, if their leader’s leadership style is at the same time transactional, followers will also attempt to strengthen the exchange relationship,
because TAL is based on an exchange process (Burns, 1978). Followers thus experience conflicting communication resulting in different messages being conveyed and they can feel psychosocial stress from trying to strengthen the relationship in opposite directions.

Vulnerability–Stress Theory and Emotional Exhaustion

According to the vulnerability–stress theory, there are two fundamental factors to be considered: psychosocial stress from the external environment and internal vulnerability resulting from that stress (Beck, 1967). *Psychosocial stress* includes any kind of negative event in the individual’s environment, including the workplace. An individual’s negative attitude develops only when external psychosocial stress and internal vulnerability interact (Abramson, Metalsky, & Alloy, 1989). Thus, a negative attitude does not result from a single factor. In this study, we labeled a follower’s stress created by LMX and TAL as psychosocial stress.

Burnout is defined as a syndrome of EE and cynicism toward one’s work in response to chronic organizational stressors (Maslach & Jackson, 1981). Burnout is a core construct because it is related not only to organizational outcomes, such as turnover, job dissatisfaction, absenteeism, and decrease of performance, but also to personal outcomes, such as alcohol use, depression, drug use, and mental disorders (Maslach & Jackson, 1981). EE, which is a dimension of burnout, is one of the more extreme types of work-related strain (Gaines & Jermier, 1983) and involves feelings of being used up, frustrated, fatigued, and worn out (Maslach & Jackson, 1981). We labeled employees’ EE as internal vulnerability because EE depletes emotional resources and, therefore, individuals’ tolerance for external psychosocial stress becomes diminished.

Joint Effect of Leader–Member Exchange, Transactional Leadership, and Emotional Exhaustion

According to the contingency perspective of leadership, leadership style cannot be understood in isolation from its contextual factors (Podsakoff, Niehoff, MacKenzie, & Williams, 1993). It should be understood as a social construct. We integrated the contingency perspective of leadership, relationship theory (Clark & Mills, 1993), and vulnerability–stress theory in developing our model, with LMX as a discretionary stimulus and TAL as an ambient stimulus, and employees’ EE as internal vulnerability.

We expected that only employees’ who were very emotionally exhausted would experience psychosocial stress between LMX and TAL. That is, firstly, we expected that low TAL would not generate psychosocial stress with LMX. Low TAL occurs when leaders show TAL less frequently. They do not share followers’ mutual interests and do not exhibit contingent reward and punishment behavior.
Secondly, we expected that high TAL would generate psychosocial stress with LMX. Leaders with high TAL frequently exchange rewards and punishment with followers, whether or not they have met expectations or standards. Thus, an increase of LMX with high TAL will increase stress. Employees who have low EE can overcome the stress, because their cognitive resources fully recover, but as employees with high EE cannot overcome it and their cognitive resources remain depleted, their OAC will decrease. Therefore, we proposed the following hypothesis:

Hypothesis 1: The relationship of leader–member exchange and organizational affective commitment will be jointly moderated by transactional leadership and emotional exhaustion. The relationship will be negative under high transactional leadership and high emotional exhaustion.

The Job Demands–Resources Model

The job demands–resources model was developed to examine the relationship between employees’ attitudes, burnout, and performance (Demerouti et al., 2001). In this study, we used the job demands–resources model to examine how employees’ attitudes and EE contribute to explaining variance in their in-role performance. *Job demands* refer to the physical, psychological, social, and organizational aspects of a job that require sustained physical and/or psychological (cognitive and emotional) effort and are therefore associated with certain physiological and/or psychological costs. Examples are role overload, emotional demands, and poor environmental conditions. *Job resources* refer to the physical, psychological, social, or organizational aspects of a job that (a) are functional in achieving work goals, (b) reduce job demands and the associated physiological and psychological costs, or (c) stimulate personal growth and development. Examples are salary, job security, and career opportunities. According to the job demands–resources model, job demands are positively related to EE in that they reduce the quality of in-role performance, and job resources have a negative relationship with disengagement, which results in poor extrarole performance (Bakker et al., 2004). Because we used EE as employees’ internal vulnerability in this study, we reasoned that it would be sufficient to use in-role performance rather than global or extrarole performance.

Further, according to the job demands–resources model, it is expected that employees’ attitudes and stressors will jointly affect both their in-role and extrarole performance, as job demands and resources affect employees’ attitudes and stressors simultaneously. First, our aim was to confirm extant research results of the positive relationship between OAC and in-role performance. Then, we predicted that the positive relationship would be weakened by EE. As we regarded LMX as an antecedent of OAC and in-role performance as a consequence of OAC, we expected that OAC would mediate the relationship...
between LMX and in-role performance. Therefore, we proposed the following hypotheses:

Hypothesis 2: The relationship between organizational affective commitment and in-role performance will be moderated by emotional exhaustion such that the relationship will be weaker under high emotional exhaustion.

Hypothesis 3: Organizational affective commitment will mediate a positive relationship between leader–member exchange and in-role performance.

Method

Participants
We collected the data from employees of a South Korean engine-manufacturing company through an online survey conducted during February and March of 2011. Team members from diverse functional areas of the company and their corresponding supervisors participated in the survey. Participants were told that the Seoul National University was conducting a study on working conditions and work behavior.

To decrease the possible influence of common method bias (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003), the data were collected at four points in time. First, prior to the first survey, we acquired gender, tenure, and demographic information for the employees from the human resource department of the company. Second, in the first survey, we sent survey forms to all team members in the company, containing measures of job satisfaction, EE, LMX, and perception of TAL. Third, 45 days later, we distributed a second survey to the team members containing a measure of OAC. Fourth, the immediate supervisor of each of the team members answered a survey on his or her subordinates’ in-role performance. The final sample consisted of 332 team members and their corresponding supervisors. The response rate was 70.1%. Participants were 90.03% men with a mean age of 35.7 years ($SD = 7.1$) and an average organization tenure of 6.3 years ($SD = 4.8$).

Measurement
All measures were translated into Korean by two organizational behavior professors, one of whom was one of the authors. To verify the validity of the translated measures, we conducted confirmatory factor analysis. In general, root mean square error of approximation (RMSEA) scores below .08 (Browne & Cudeck, 1993), and incremental fit index (IFI) and comparative fit index (CFI) scores above .90 (Bentler & Bonett, 1980) are considered acceptable to indicate a good model fit. For responses to all survey items 7-point Likert scale estimates were used, ranging from 1 (strongly disagree) to 7 (strongly agree). Results of a five-factor model for job satisfaction, OAC, TAL, EE, and LMX were as
follows: $\chi^2(1880, N = 332) = 5810.72, p < .01, \text{RMSEA} = .07, \text{CFI} = .91, \text{and IFI} = .92$. The results indicated that all measures had the same factor structure as the original measures suggested.

Organizational affective commitment. We measured OAC using eight items from the scale developed by Allen and Meyer (1990). A sample item is “I would be very happy to spend the rest of my career in this organization.” Cronbach’s alpha = .89.

Leader–member exchange. LMX was measured using seven items developed by Scandura and Graen (1984). A sample item is “How well do you feel that your immediate supervisor understands your problems and needs?” Cronbach’s alpha = .91.

Transactional leadership. TAL was measured using 16 items from Pearce and Sims (2002). A sample item is “If I perform well, my team leader will recommend more compensation.” Cronbach’s alpha = .96.

Emotional exhaustion. EE was measured with nine items developed by Maslach and Jackson (1981). A sample item is “I feel emotionally drained from my work.” Cronbach’s alpha = .89.

In-role performance. In-role performance was measured using seven items developed by Williams and Anderson (1991). A sample item is “He (or she) adequately completes assigned duties.” Cronbach’s alpha = .90.

Control variables. We controlled for job satisfaction for the following reasons. First, job satisfaction is closely related to OAC (Meyer et al., 2002). Second, we needed to control for a variable that indicates the general attitude in the work setting to decrease the possible influence of common method bias (Podsakoff et al., 2003). Job satisfaction was measured with the six-item Job Satisfaction Scale developed by Price and Mueller (1981). Cronbach’s alpha = .92.

Results

In Table 1 descriptive statistical results are presented. EE was negatively related to OAC and in-role performance. LMX was positively related to OAC, and OAC was positively related to in-role performance.

To test Hypothesis 1, we performed hierarchical linear regression analysis. We controlled for job satisfaction at Step 1, created cross-product terms using centered predictors, and entered the main effects at Step 2, the three two-way interaction terms at Step 3, and the three-way interaction term at Step 4.

Support for the three-way interaction hypothesis would require two conditions. First, the three-way interaction term should explain a significant amount of the variance of the dependent variable. Results shown in Table 2 summarize the multiple regression model predicting OAC. At Step 4, the three-way interaction terms added unique variance. Second, the regression coefficient of the three-way
Table 1. Descriptive Statistics and Intercorrelations of Study Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>Alpha</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Job satisfaction</td>
<td>4.32</td>
<td>1.24</td>
<td>.92</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Affective commitment</td>
<td>4.03</td>
<td>0.44</td>
<td>.89</td>
<td>.32**</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3. Leader-member exchange</td>
<td>4.44</td>
<td>1.09</td>
<td>.91</td>
<td>.46**</td>
<td>.27**</td>
<td>--</td>
</tr>
<tr>
<td>4. Emotional exhaustion</td>
<td>4.97</td>
<td>0.98</td>
<td>.89</td>
<td>-.41**</td>
<td>-.17**</td>
<td>-.29**</td>
</tr>
<tr>
<td>5. Transactional leadership</td>
<td>4.99</td>
<td>1.01</td>
<td>.96</td>
<td>.41**</td>
<td>.18**</td>
<td>.69**</td>
</tr>
<tr>
<td>6. In-role performance</td>
<td>5.54</td>
<td>0.72</td>
<td>.90</td>
<td>.37**</td>
<td>.16**</td>
<td>.29**</td>
</tr>
</tbody>
</table>

Note. N = 332. All variables measured on a 7-point scale. *p < .05, **p < .01.

Table 2. Hierarchical Regression Coefficients for Organizational Affective Commitment: Leader–Member Exchange x Emotional Exhaustion x Transactional Leadership

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Step 1</th>
<th></th>
<th>Step 2</th>
<th></th>
<th>Step 3</th>
<th></th>
<th>Step 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>t</td>
<td>β</td>
<td>t</td>
<td>β</td>
<td>t</td>
<td>β</td>
<td>t</td>
</tr>
<tr>
<td>Job satisfaction</td>
<td>.32**</td>
<td>6.23</td>
<td>.34**</td>
<td>5.65</td>
<td>.34**</td>
<td>5.59</td>
<td>.33**</td>
<td></td>
</tr>
<tr>
<td>Leader-member exchange</td>
<td>.28**</td>
<td>3.18</td>
<td>.59</td>
<td>1.64</td>
<td>-1.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional exhaustion</td>
<td>.22**</td>
<td>4.03</td>
<td>.06</td>
<td>.24</td>
<td>-1.50*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transactional leadership</td>
<td>-.13</td>
<td>-1.53</td>
<td>-.49</td>
<td>-1.75</td>
<td>-1.65**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMX * emotional exhaustion</td>
<td>-.39</td>
<td>-1.25</td>
<td>-1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMX * transactional leadership</td>
<td>-.05</td>
<td>-.13</td>
<td>-2.68*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional exhaustion * transactional leadership</td>
<td>.58</td>
<td>1.81</td>
<td>-2.33**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMX * emotional exhaustion * transactional leadership</td>
<td>-.96</td>
<td>-2.96*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>.11</td>
<td>.17</td>
<td>.18</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔR^2</td>
<td>.06**</td>
<td>.01</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. LMX = leader–member exchange. *p < .05, **p < .01.
interaction term should be significant. As shown in Table 2, the interaction was statistically significant and its direction was consistent with the prediction. Figure 1 depicts the three-way interaction effect. We plotted the graph by following the procedure suggested by Aiken and West (1991). We used the constant and unstandardized coefficient of Step 4. As shown in the figure, the relationship between LMX and OAC was strongly negative only when the levels of EE and TAL were high (one standard deviation above the mean).

![Figure 1](image)

Figure 1. Three-way interaction plot of leader–member exchange, emotional exhaustion, and transactional leadership predicting organizational affective commitment.

To further test Hypothesis 1, we performed the slope difference tests (Dawson & Richter, 2006) corresponding to these figures (see Table 3). As a result of these tests, we confirmed that the slope of Group 1 was significantly different from those of other groups. As we had predicted, the LMX-OAC relationship was significantly negative under a high EE and high TAL condition (Group 1). Thus, Hypothesis 1 was supported.
To test Hypothesis 2, we controlled for job satisfaction at Step 1, created interaction terms using centered predictors, and entered the main effects at Step 2 and interaction terms at Step 3.

Table 3. Standard Error of Differences Between All Six Pairs of Slopes and Associated Test Statistics

<table>
<thead>
<tr>
<th>Slopes</th>
<th>Slope difference</th>
<th>SE of difference</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 and Group 2</td>
<td>-.17</td>
<td>.08</td>
<td>-2.23</td>
<td>.03</td>
</tr>
<tr>
<td>Group 1 and Group 3</td>
<td>-.13</td>
<td>.06</td>
<td>-2.20</td>
<td>.03</td>
</tr>
<tr>
<td>Group 2 and Group 4</td>
<td>.02</td>
<td>.06</td>
<td>.34</td>
<td>.74</td>
</tr>
<tr>
<td>Group 3 and Group 4</td>
<td>-.03</td>
<td>.04</td>
<td>-.76</td>
<td>.45</td>
</tr>
<tr>
<td>Group 1 and Group 4</td>
<td>-.15</td>
<td>.08</td>
<td>-1.97</td>
<td>.05</td>
</tr>
<tr>
<td>Group 2 and Group 3</td>
<td>.05</td>
<td>.07</td>
<td>.70</td>
<td>.49</td>
</tr>
</tbody>
</table>

Note. Group 1: high emotional exhaustion, high transactional leadership; Group 2: high emotional exhaustion, low transactional leadership; Group 3: low emotional exhaustion, high transactional leadership; Group 4: low emotional exhaustion, low transactional leadership.

Job satisfaction was positively significant at all steps. Interaction terms between OAC and EE were significant at Step 3. The interaction terms added unique variance. Therefore Hypothesis 2 was supported.

Table 4. Hierarchical Regression Coefficients for In-role Performance: Organizational Affective Commitment x Emotional Exhaustion

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Step 1</th>
<th></th>
<th></th>
<th>Step 2</th>
<th></th>
<th></th>
<th>Step3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>t</td>
<td>β</td>
<td>t</td>
<td>β</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>Job satisfaction</td>
<td>.37**</td>
<td>7.14</td>
<td>.32**</td>
<td>5.48</td>
<td>.34**</td>
<td>5.73</td>
<td></td>
</tr>
<tr>
<td>Organizational affective commitment</td>
<td>-.10</td>
<td>-1.86</td>
<td>.33*</td>
<td>2.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emotional exhaustion</td>
<td>-.18**</td>
<td>-3.30</td>
<td>.83*</td>
<td>2.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organizational affective commitment * emotional exhaustion</td>
<td></td>
<td></td>
<td>-1.12**</td>
<td>-2.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R² .13 .18 .20
ΔR² .04** .02**

Note. * p < .05, ** p < .01.

To test the mediating process predicted in Hypothesis 3, we conducted mediation analyses with a Sobel test (Sobel, 1982) and by calculating the bootstrap confidence interval, rather than using the multistep approach recommended by Baron and Kenny (1986). As the normal distribution of indirect effect is not assumed in bootstrap analysis, this method is preferred to a Sobel test (Hayes, 2009). The Sobel test and bootstrap intervals were computed based on the SPSS syntax as set out by Preacher and Hayes (2004). The results presented in Table
show these mediation analyses. The indirect mediation effect was significant in the Sobel test and the 95% confidence intervals did not include zero. Thus, Hypothesis 3 was supported.

Table 5. Mediation Analysis for Hypothesis 3

<table>
<thead>
<tr>
<th>Total effect</th>
<th>Direct effect</th>
<th>Indirect effect</th>
<th>SE</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p</th>
<th>SE</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>.19</td>
<td>.17</td>
<td>.09</td>
<td>.02</td>
<td>.05</td>
<td>.13</td>
<td><.01</td>
<td>.02</td>
<td>.05</td>
<td>.13</td>
</tr>
</tbody>
</table>

Discussion

It is predictable that employees in a high-quality LMX relationship with their leader would be committed to their organization because the leader treats the employees well and pays attention to them. Previous researchers have reported repeated findings of a positive relationship between LMX and OAC (Steiner, 1997; Vandenberghe, Bentein, & Stinglhamber, 2004; Wayne et al., 2009). However, high-quality LMX also means there is also recurrent—and spontaneous—interaction of the employee with the leader. This frequent interaction can be difficult for employees because the team leader has the authority to evaluate, discipline, reward and promote them. That TAL and LMX are not considered to be a well-matched pair can also be supported by Scandura and Pellegrini’s (2008) findings that the relationship of LMX with calculus-based trust is curvilinear. Scandura and Pellegrini state that calculus-based trust is a “market-oriented, transactional, economic calculation that involves weighing the outcomes from sustaining the relationship relative to the costs of severing it” (p. 103). Furthermore, emotionally exhausted employees are sensitive to this type of internal vulnerability stress.

The results of the test of our hypothesis about antecedents of OAC with a South Korean sample supported our prediction that the coexistence of high-quality LMX and high TAL could lead to psychosocial stress among the employees. According to our result, TAL alongside high LMX can weaken the OAC of employees with EE. In contrast, transformational or supportive leaders provide emotional support and necessary resources for emotionally exhausted employees. The results of the test of our hypothesis about the consequences of OAC confirmed that there was a positive relationship between OAC and in-role performance, and we found that EE moderated that relationship. Further, OAC
mediated the relationship between its antecedent (LMX) and its consequence (in-role performance).

We have contributed to the literature in the following ways: First, we have suggested a new framework for analyzing employees’ EE by adopting the vulnerability–stress theory. Although it follows that people are vulnerable when they feel social pressure or stress, researchers have only partially included this point of view in extant studies. Our results supported our expectation that EE and TAL would influence the relationship between LMX and OAC, and thus, this confirms the framework we proposed. Second, by exploring three-way interactions, we confirmed that the EE of the individual employee, the leader’s style, and their relationship, should be considered simultaneously to gain a comprehensive perspective and to fully understand these organizational phenomena. Third, we have contributed to the OAC literature by conducting a comprehensive examination of the antecedents and consequences of OAC. In addition, we have tested the mediating role of OAC between its antecedents and consequences.

In terms of practical implications, our findings suggest the limitations of TAL. Nevertheless, employees frequently encounter TAL in today’s business and industry. For employees who are internally vulnerable, even high-quality LMX does not make a good pairing with TAL. In the same manner, our findings provide some clues to strategies for enhancing the OAC of employees with high EE. We concluded that employees’ in-role performance would decline when they have EE, and work with TAL and high LMX.

Limitations and Recommendations for Future Research

There are several limitations in this study. First, we measured most variables using self-report methodology. A better design for reducing common method bias is recommended. Second, as the analyzed data were from only one South Korean company, the generalizability of the results is limited. Replication of the study in other countries is strongly recommended. Third, the data for analysis were gathered at four different time periods, but more comprehensive longitudinal studies should be conducted to verify the causal relationship that may exist among the variables.

The interaction effect of LMX, TAL, and EE could possibly occur in the context of other employee attitudes and behavior, on the basis of the vulnerability–stress theory. Other factors to consider are job satisfaction, turnover intention, organizational citizenship behavior, and perceived justice, as well as OAC. In addition, we adapted the job demands–resources model to analyze the moderating effect of EE. It is possible that extrarole performance could be included as well as in-role performance in comprehensive studies. Other dimensions of burnout, such as personal accomplishment and depersonalization, could be included as
well as EE in the framework for future research. We are hopeful that our theory and findings in this study will provide useful leads for future researchers.

References

