Physical Chemistry Chemical Physics

This paper is published as part of a PCCP Themed Issue on:

Water at interfaces

Guest Editor: Martin McCoustra

Editorial

Water at interfaces

DOI: 10.1039/b12223g

Communications

Spectroscopic and computational evidence for SO\textsubscript{2} ionization on 128 K ice surface

DOI: 10.1039/b109839p

On “the complete basis set limit” and plane-wave methods in first-principles simulations of water

DOI: 10.1039/b10017a

Papers

Lattice match in density functional calculations: ice Ih vs. β-Agl

DOI: 10.1039/b108482n

A proton between two waters: insight from full-dimensional quantum-dynamics simulations of the \{H\textsubscript{2}O–H–OH\}_\textsubscript{2} cluster

DOI: 10.1039/b107317a

Molecular dynamics investigation of the intrinsic structure of water–fluid interfaces via the intrinsic sampling method

DOI: 10.1039/b107437m

An accurate analytic representation of the water pair potential

Wojciech Cencek, Krzysztof Szalewicz, Claude Leforestier, Rob van Harrevelt and Ad van der Avoird, Phys. Chem. Chem. Phys., 2008, 10, 4716
DOI: 10.1039/b109435g

Characterization of interfacial water in MOF-5 (Zn\textsubscript{4}(O)(BDC)\textsubscript{3})—a combined spectroscopic and theoretical study

DOI: 10.1039/b107458p

Water confined in reverse micelles–probe tool in biomedical informatics

Florin Despa, Phys. Chem. Chem. Phys., 2008, 10, 4740
DOI: 10.1039/b105699b
Raman spectra of complexes of HNO₃ and NO₃⁻ with NO₂ at surfaces and with N₂O₄ in solution
DOI: 10.1039/b810081k

Thermodynamics of water intrusion in nanoporous hydrophobic solids
DOI: 10.1039/b807471b

Molecular level structure of the liquid/liquid interface. Molecular dynamics simulation and ITIM analysis of the water-CCl₄ system
DOI: 10.1039/b807299j

Gas phase hydration of organic ions
DOI: 10.1039/b809440n

Solvent structures of mixed water/acetonitrile mixtures at chromatographic interfaces from computer simulations
DOI: 10.1039/b807492e

Water photodissociation in free ice nanoparticles at 243 nm and 193 nm
DOI: 10.1039/b806865h

Ion spatial distributions at the liquid–vapor interface of aqueous potassium fluoride solutions
DOI: 10.1039/b807041e

Electroacoustic and ultrasonic attenuation measurements of droplet size and ζ-potential of alkane-in-water emulsions: effects of oil solubility and composition
DOI: 10.1039/b807623e

Gas hydrate nucleation and cage formation at a water/methane interface
DOI: 10.1039/b807455k

Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K
DOI: 10.1039/b808217k

Influence of wettability and surface charge on the interaction between an aqueous electrolyte solution and a solid surface
DOI: 10.1039/b806236f

Molecular dynamics study of hydrated imogolite 2. Structure and dynamics of confined water
DOI: 10.1039/b803479f

Assessing the performance of implicit solvation models at a nucleic acid surface
DOI: 10.1039/b807384h
Aqueous peptides as experimental models for hydration water dynamics near protein surfaces
Cécile Malardier-Jugroot, Margaret E. Johnson, Rajesh K. Murarka and Teresa Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 4903
DOI: 10.1039/b806995f

Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses
DOI: 10.1039/b808246d

Increased interfacial thickness of the NaF, NaCl and NaBr salt aqueous solutions probed with non-resonant surface second harmonic generation (SHG)
Hong-tao Bian, Ran-ran Feng, Yan-yun Xu, Yuan Guo and Hong-fei Wang, Phys. Chem. Chem. Phys., 2008, 10, 4920
DOI: 10.1039/b806362a

Determination of the electron’s solvation site on D/O/Cu(111) using Xe overlayers and femtosecond photoelectron spectroscopy
DOI: 10.1039/b807314g

Breakdown of hydration repulsion between charged surfaces in aqueous Cs⁺ solutions
Ronit Goldberg, Liraz Chai, Susan Perkin, Nir Kampf and Jacob Klein, Phys. Chem. Chem. Phys., 2008, 10, 4939
DOI: 10.1039/b807459n

A macroscopic water structure based model for describing charging phenomena at inert hydrophobic surfaces in aqueous electrolyte solutions
DOI: 10.1039/b807395c

Thermally induced mixing of water dominated interstellar ices
DOI: 10.1039/b807220e

Water hydrogen bond analysis on hydrophilic and hydrophobic biomolecule sites
Daniela Russo, Jacques Ollivier and José Teixeira, Phys. Chem. Chem. Phys., 2008, 10, 4968
DOI: 10.1039/b807551b

Hydronium and hydroxide at the interface between water and hydrophobic media
DOI: 10.1039/b806432f

Average molecular orientations in the adsorbed water layers on silicon oxide in ambient conditions
DOI: 10.1039/b810309g

Interfacial water structure at polymer gel/quartz interfaces investigated by sum frequency generation spectroscopy
Hidenori Noguchi, Minowa Hiroshi, Taiki Tominaga, Jian Ping Gong, Yoshihito Osada and Kohei Uosaki, Phys. Chem. Chem. Phys., 2008, 10, 4987
DOI: 10.1039/b807297n

Co-adsorption of water and hydrogen on Ni(111)
DOI: 10.1039/b808219g

Water–methanol mixtures: topology of hydrogen bonded network
DOI: 10.1039/b808326f
Proton mobility in thin ice films: a revisit

Eui-Seong Moon, Chang-Woo Lee and Heon Kang*

Received 6th May 2008, Accepted 18th June 2008
First published as an Advance Article on the web 9th July 2008
DOI: 10.1039/b807730b

We have examined proton transport through an ice film in the temperature range 73–140 K by initially adding hydronium ions into the interior of the film and then monitoring the build-up of hydronium ion population at the film surface. The result confirms that the proton exhibits limited mobility in the ice film at low temperature, but it becomes highly mobile at temperature above 130 K. Based on this result we suggest an explanation of the anomalous experimental observations in the literature for the proton mobility in ice films.

Proton transport in ice is an important process related to electrical conductivity1,2 and chemical reactivity of ice,3 and this subject has been studied by numerous researchers for a long time.1–13 The experimental results on the mobility of protons in ice, however, vary widely; whereas some studies claim that proton mobility in ice crystals is faster than that in liquid water,4 other studies indicate that proton transport is a thermally activated process that occurs substantially slowly in ice at low temperature5–9 or even not at all.10 Devlin and coworkers5–7 studied the H/D isotopic exchange in water molecules in ice nanocrystals at a temperature below 145 K using IR spectroscopy, and suggested that the H/D exchange occurred via proton transfer between water molecules and subsequent movement of Bjerrum defects (the “hop-and-turn” mechanism). Everest and Pursell8 examined the H/D isotopic exchange process in the first few molecular layers of ice films at similar temperatures using IR spectroscopy. Geil et al.9 conducted NMR experiments with ice crystals and revealed two types of proton transport processes in the temperature range 160–260 K: a fast process mediated by Bjerrum defect dynamics and a slow process that was attributed to interstitial diffusion of water molecules. Cowin et al.10 performed the ‘soft-landing’ experiments of hydronium ions on ice films and observed that protons were immobile across the ice film over a fairly wide temperature range (30–190 K). Park et al.11 adsorbed HCl onto an ice film and examined the H/D exchange reaction in surface water molecules. They observed that proton transfer was facile only in the lateral direction at the film surface, whereas vertical proton transfer to the film interior was almost absent at 90–140 K. The proton transport behaviors observed in these studies, i.e., mobile protons in ice5–9 and vertically immobile protons at the ice surface,10,11 seem to contradict each other. Recently, Lee et al.12,13 offered an explanation for this contradiction by showing that protons exhibit asymmetric transport behavior at the surface and interior of ice due to the thermodynamic affinity of protons for the ice surface.

The interpretation by Lee et al.12,13 agrees with the occurrence of proton transport via several different mechanisms that operate within different temperature regimes: the proton hopping relay,1,2 the hop-and-turn process,5–7 and interstitial molecular diffusion.9 Yet, an opposing evidence also exists in the literature. As part of the soft-landing experiments of hydronium ions, Cowin et al.10 prepared a ‘proton-sandwich’ ice film by depositing hydronium ions onto an ice film and then water molecules to form an ice overlayer at 165 K. Subsequent Kelvin probe measurements revealed no vertical movement of protons embedded in the ice film. The observation conflicts with the mobile character of protons observed in other works at comparable temperatures, and the proton mobility issue is considered yet unresolved. One might suspect that proton mobility in ice films is affected by specific conditions of samples, for instance, sample geometry (thin film, cluster, or bulk crystal), morphology (crystalline or amorphous phase), proton location (surface or interior doping), and the presence of counter anions. Such conditions need to be matched as closely as possible or carefully considered for the investigation of a controversial system. With this motivation we revisit the proton mobility measurement in ice films in this work. Several research groups have already reported detailed studies on this topic by using IR spectroscopy,5–8 Kelvin probe,10 and reactive ion scattering (RIS) spectroscopy,11–13 from which a unanimous conclusion can be drawn about vertical immobility of protons that are located at the ice film surfaces. In the present paper, we address only the conflicting issue of proton mobility in a ‘proton-sandwich’ ice film.

We performed the experiments in an ultrahigh vacuum chamber (base pressure 1×10^{-10} Torr) equipped with instruments for surface analysis and a sample manipulator with a temperature-control stage.3 Ice films were grown on the (0001) surface of a Ru single crystal by a backfilling method at H2O partial pressure of 1×10^{-8} Torr. The ice films grow in a layer-by-layer fashion under these conditions as verified by depositing alternate H2O and D2O layers and analyzing the isotopic population of surface water molecules.18 HCl gas (Aldrich, 99+% purity) was introduced into the chamber through a separate leak valve facing the Ru substrate surface. The ‘proton-sandwich’ films were made by two different procedures. In film I, water vapor was deposited onto a Ru substrate at a thickness of 4 bilayers (BL) at a temperature of 140 K to grow a crystalline ice film. Then, HCl was adsorbed onto the film surface at 140 K in a small amount (an exposure
of 0.5 L; 1 L = 1 × 10^{-6} \text{Torr s}). Finally, an overlayer of water molecules (4 BL) was added onto it at 73 K. The HCl gas provided excess hydronium ions and chloride ions to the film by spontaneous ionization at 140 K. Film II was prepared by growing the overlayer of water molecules (4 BL) at 140 K, instead of 73 K in film I, while the rest of the procedures were kept the same as those in film I. We also prepared an ice film with excess protons at the surface (film III) for a control experiment. This sample was prepared by growing an 8 BL-thick ice film at a selected temperature between 60 K (amorphous phase) and 140 K (crystalline phase), followed by HCl adsorption onto the surface for an exposure of 0.5 L. The ice film thickness was estimated from the temperature-programmed desorption (TPD) experiments.

Neutral and ionic species present at the film surfaces were analyzed by the techniques of Cs^+ reactive ion scattering (RIS) and low energy sputtering (LES), respectively, for their mass and population. The principle and instrumentation for these techniques have been described in detail elsewhere. Briefly, a low-energy Cs^+ beam is scattered from a target surface. Neutral molecules at the surface are picked up by the Cs^+ projectiles, forming Cs^+ molecule cluster ions (RIS process). Hydronium ions at the surface are ejected by the impact of low energy Cs^+ ions (LES process). These ions are detected by a quadrupole mass spectrometer with its ionizer filament switched off. The Cs^+ beam energy was 30 eV in the present experiments, unless specified otherwise. The Cs^+ impact did not cause secondary ionization of water molecules at this energy, and the probing depth into the ice film surface was estimated to be 1 BL. The beam current density was maintained below 1.0 nA cm^{-2} to avoid surface contamination by incident Cs^+ ions.

To measure the extent of proton transport in an ice film, we prepared the proton-sandwich ice films, as described above, and monitored the population of hydronium ions at the film surface. Fig. 1 shows the LES intensity for hydronium ions measured as a function of temperature for three ice films (I, II, and III). At the surface of film I for which the temperature of the ice overlayer growth was 73 K, the hydronium ion intensity was small and stayed almost constant in a temperature range of 73−120 K. The hydronium ion intensity increased considerably during the temperature increase from 130 to 140 K at a rate of 2 K s^{-1}, and there was a further intensity increase as the sample was kept at 140 K for 20 min. At a temperature above 140 K, the water desorption from the surface significantly reduced the thickness of these thin films and hampered any reliable measurement. The observed temperature-dependence of hydronium ion signals can be rationalized by the occurrence of two proton-transport mechanisms operating within different temperature regimes, as explained in a previous study. The weak hydronium ion intensity below 120 K is due to the transport of a limited portion of protons from a sandwich layer to the surface via the hopping relay process, which does not require thermal activation. The increased hydronium ion intensity above 130 K is due to the proton transport via a thermally activated, hop-and-turn mechanism.

In contrast to film I, film II showed a substantially high population of hydronium ions at the surface even at low temperature (≤120 K). The hydronium ion intensity increased somewhat further above 130 K. The high surface population of hydronium ions at T ≤ 120 K suggested that hydronium ions were already present at the surface when the film was prepared. We consider that during the growth of the ice overlayer at 140 K, protons remain aloft on the film surface due to its inherent tendency to reside at the ice surface and the activation of proton transport processes at this high temperature. There seems no other appropriate interpretation for the high abundance of hydronium ions observed from this surface, because the majority of protons trapped in a sandwich layer did not move to the surface at T ≤ 120 K in film I. These results indicate that a proton-sandwich film can be made only at a low enough temperature to suppress the proton migration during the overlayer growth, and film II must be a ‘proton-at-the-surface’ film.

Fig. 1 also shows the hydronium ion intensity measured from a sample prepared by HCl adsorption on the film surface (film III). The hydronium ion signal from this surface was very strong at low temperature (it went beyond the display scale for T < 120 K) and decreased with increasing temperature. As discussed in a previous study, the stronger intensity for hydronium ions at lower temperature can be attributed to the fact that hydronium ions are less efficiently hydrated and more weakly bonded to the ice surface at a lower temperature, and this enhances the LES yield for the hydronium ions. At high temperature, the efficiently hydrated hydronium ions with strong bonding to the surface reduces the LES yield.

After waiting for 20 min at T = 140 K, the hydronium ion intensity from film III reached a value close to those monitored from films I and II. The difference in hydronium ion intensities at this stage was within the intensity fluctuations associated with the instrumental factors. At this temperature...
the motions of protons and water molecules are activated, and the proton distribution near the ice surface will reach an equilibrated state after a sufficiently long time. The observation of approximately the same hydronium-ion intensities indicates an approach to such equilibrium, at which the majority of hydronium ions populate near the ice surface, efficiently solvated by water molecules.

The discovery made with film II brings attention to the soft-landing experiments of hydronium ions on ice films reported by Cowin et al. As part of the experiments to monitor proton mobility in ice films, they intended to prepare a proton-sandwich structure by depositing hydronium ions onto an ice film and then growing the ice overlayer at 165 K. Since hydronium ions can remain afloat on the surface of the growing layer at this temperature, one can imagine that the ice film may have protons at the surface instead of having them in the interior. In this case, the protons may persist to stay at the surface during the subsequent Kelvin probe measurement and thus appear immobile in the vertical direction.

We have changed several experimental conditions in the present work to check their effects on proton mobility. As the thickness of the ice overlayer of film I was increased from 4 to 8 BL, protons still migrated from a sandwich layer to the surface, though more slowly than for the case of the 4 BL-thick overlayer at the same temperature. In film II, increasing the overlayer thickness to 8 BL was not able to hold the excess protons in the film interior at all. To see the effects of film growth temperature and ice morphology, we varied the temperatures for HCl adsorption and the upper layer growth between 60–100 K for films I and II, and the growth temperature for film III between 60–140 K. These changes did not alter the major qualitative features of the curves shown in Fig. 1. Also, during the temperature ramp (73–140 K) at a rate of 2 K s−1 in the present experiment, the upper layer of film I would be remained in an amorphous phase for the most of the time, whereas the film morphology changed to a crystalline phase at 140 K after waiting for 20 min, if protons did not interfere with the phase change characteristics. In this respect, the result suggests that protons are mobile through the ice film in both amorphous ($T < 140$ K) and crystalline phases ($T \geq 140$ K) that form during the course of the temperature ramp. In addition, it has been observed that Cl− ions produced from HCl dissociation do not migrate to the surface of film I at $T \leq 140$ K, while protons build up a substantial population at the surface. This shows that the upward migration of proton is not caused by the presence of counter anions.

In conclusion, the present study suggests that the anomalous experimental reports on the mobility of protons in ice films can be explained by the affinity of protons for the ice surface and the facile proton transport near the surface at $T \geq 130$ K. The result verifies that protons are mobile in an ice film and can migrate from the film interior to the surface at favorable temperatures. This conclusion is unaffected by the changes in ice film morphology and thickness (2–8 BL) and by the presence of counter anions.

This work was supported by the Korea Science and Engineering Foundation grant funded by the Korea government (R11-2007-012-02001-0).

References