A reappraisal of *Sambucus pendula* Nakai on Ulleung Island and its allies

Hyo-In Lim, Kae Sun Chang, Heung Soo Lee, Chin-Sung Chang* and Hui Kim¹

Department of Forest Sciences and The Arboretum, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea ¹Department of Medicinal Plants Resources, Mokpo National University, Muan-gun, Jeollanam-do, 534-729, Korea

ABSTRACT: *Sambucus pendula* Nakai, which is an endemic on Ulleung Island of Korea, is characterized by a large pendulous inflorescence and small fruit. A set of 256 individuals were used to investigate the patterns of intraspecific variation of *S. racemosa* subsp. *kamitatica*, *S. racemosa* subsp. *sieboldiana*, and *S. williamsii* including *S. pendula* using PCA (principal components analysis). This analysis showed that *S. pendula* was distinct based on its large inflorescence and long peduncle. Our data showed a morphological distinction between subsp. *kamitatica* from northeastern areas and subsp. *sieboldiana* from Jeju Island, but the two taxa overlap in the southern and eastern parts of Korea in terms of chromosome number, color of style, and allozyme data. Our study agrees that *S. pendula* on Ulleung Island may be the result of genetic drift that occurred during isolation since the Quaternary period. This has been suggested as a reason for the genetic differences observed between the two taxa and would explain the unique variation patterns of *S. pendula*. However, the morphological differentiation between the *S. racemosa* complex and *S. pendula* is not considered sufficient to warrant recognition of specific status. Therefore, we recommend that only one polymorphic species of *S. racemosa* in Eurasia be recognized and that *S. pendula* be considered a subspecies of *S. racemosa*.

Keywords: allozymes, aneuploid, morphological analysis, *Sambucus pendula*, speciation

Author for correspondence: quercus@plaza.snu.ac.kr

Spach(1839)는 막종나무속을 3개 계(Sambucus, Euhos Spach, Botryosambucus Spach)로 구분하였고, 대부분 학자들(Rehrder, 1940; Weberling, 1966; Hara, 1983; Poyarkova, 2000; Obha, 2001)은 이 분류체계를 인정하고 있다. 국내에 자생하는 모든 종은 목록성이, 수(pith)가 강하고 원추 형태로 부착된 Botryosambucus Spach(1839, 1909, 2002; Fukuoka, 1887)에 속한다. 최근 DNA 분석(Eriksson and Donoghue, 1997)에서도 본 집단에서 단일개체(monophyly)된 것으로 확인되었다. 그러나, 동아시아에 분포하는 막종나무속에 대한 실험이 대해서는 분류학자간 이견이 존재하니(Schweering, 1909, 1920; Rehder, 1940; Hara, 1956, 1983; Bolli, 1994) 매우 복잡한 학명의 변동(중, 영, 혹은 번도 등이 있었으며, 또한 국가별로 다양한 분류학적 차이가 있는 것으로 나타났다.

말로종나무(S. pendula Nakai)는 화석이 크고 동엽로 키지며 밑잎은 작은 것이 작고(3 mm) 특이하고 나카이(1917)가 한반도 동해도 지역에 분포하는 특성으로 최초로 기재하였다. 이후 Lee(1966, 1980)는 가지가 안으로 길고 밑잎이 작고(3 mm) 특이하다고 보고 S. sieboldiana의 변종, 즉 S. sieboldiana var. pendula (Nakai) T. B. Lee로, 처리하였다. 그러나, Schwerin(1920)은 표본학적 일이 기재된 나카이(1917)로 말로종나무의 화석이 치는 특성은 전 화석에서 나타나는 일반적인 현상이며 화석의 크기만이 변이의 일종으로 인식하여 실질가치가 낮은 S. racemosa var. glabra Miq.로 추정하였다. 현재까지 국내 학자들(Kawanoto, 1943; Lee, 1980; Lee, W. T., 1996; Lee, Y. N., 1996; Im, 2000)은 말로종나무를 한반도 특종으로 인식하고 있지만, 논란이 되는 화석의 크기, 약 백미리 섬과 같이 화석에서 대한 구체적인 형태는 나타나지 않았으며 Lee(1966)의 분류학적 치아이외에는 근연종에 대한 연구가 이루어져 있지 않다.

한편, Hara(1983)는 일본에서 지랑쿠나무의 열세계 수는 2n = 38인 반면, 담나무는 2n = 38, 이외에 이수계인 2n = 38을 추가로 확인하였다. 기존 연구에 의하면 막종나무속에서 열세계 개수가 다른 계데체는 서로 교잡될 때 정상적인 F1이 형성되지 않고, 동일한 열세계 개수를 가진 개체 간에만 교잡이 되는 것으로 알려져 있다(Simovnikov et al., 2007). 분류군간 열세계 수 확인은 종간 접종에 대한 간접적 증거 자료로 별로 판매 중요하다. 따라서, 말로종나무
의 염색체를 확인하여 이수체 현상의 유무와 근연종간의 염색체 수에 대한 검토가 필요하다.

본 연구는 말오름나무의 분류학적 실체 확인을 위해 한반도에 분포하는 근연종인 지린쿠나무, 닭나무, 망충나무 등의 형태 비교와 염색체 개수 확인, 동위효소 분석 등 실
립분류학적 연구를 시도하였다. 연구목적은 다양한 분석인 주성분분석(PCA)을 통해 각 분류군간 형태적 특징을 확
인하고 동위효소 분석을 통해 말오름나무의 실체를 확인
하고자 한다.

재료 및 방법

형태분석: 2004년부터 2009년까지 5년간 국내 각지에
서 채집한 개인표본과 서울대학교 수목원 Ltd표본관
(SNUA) 및 국립수목원 표본관(KH)에 소장된 표본을 이
용하였다. 총정에 사용한 표본의 개수는 개화기 표본 총
256점(S. racemosa ssp. kamtschatcica 44점, S. racemosa ssp.
sieboldiana 65점, S. pendula 67점, S. williamsii 80점)이다.

한반도에는 닭나무가 제주도 지역에만 분포하는 것으
로 보고되고 있어(Lee, 1980; Lee, W. T., 1996; Lee, Y. N.,
1996; Im, 2000) 제주도 지역의 개체만을 망충나무로 동정하
였고, 울릉도의 모든 개체를 말오름나무로 동정하였다.
또한, 한국 내륙에서 채집한 개체는 거의 대부분 화사에
됨이 있어 본 연구에서는 Harada(1983)가 밀한 덜의 형태를
근간으로 지림쿠나무와 중간 형태의 덜을 가진 개체를 망
충나무로 각각 동정하였다 (결과의 암수미리 색깔과 덜의
모양 참조).

기존 연구(Schwerin, 1909, 1920; Nakai, 1917, 1921b, 1926;

Fig. 1. Quantitative morphological characters examined in this study (see Table 1).
Table 1. Morphological characters measured for the morphometric analyses of the *S. racemosa* complex.

<table>
<thead>
<tr>
<th>Code</th>
<th>Morphological characters with units of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Inflorescence length (mm)</td>
</tr>
<tr>
<td>B</td>
<td>Inflorescence width (mm)</td>
</tr>
<tr>
<td>C</td>
<td>Peduncle length (mm)</td>
</tr>
<tr>
<td>D</td>
<td>Length of inflorescence stem (mm)</td>
</tr>
<tr>
<td>E</td>
<td>First pedicel length (mm)</td>
</tr>
<tr>
<td>F</td>
<td>Distance from the end of the peduncle to the second pedicel (mm)</td>
</tr>
<tr>
<td>G</td>
<td>Flower diameter (mm)</td>
</tr>
<tr>
<td>H</td>
<td>Number of leaflet</td>
</tr>
<tr>
<td>I</td>
<td>Petiole length (mm)</td>
</tr>
<tr>
<td>J</td>
<td>Length of compound leaf (mm)</td>
</tr>
<tr>
<td>K</td>
<td>First leaflet length (mm)</td>
</tr>
<tr>
<td>L</td>
<td>First leaflet width (mm)</td>
</tr>
<tr>
<td>M</td>
<td>Second leaflet length (mm)</td>
</tr>
<tr>
<td>N</td>
<td>Second leaflet width (mm)</td>
</tr>
<tr>
<td>O</td>
<td>Angle of first leaflet base (*)</td>
</tr>
<tr>
<td>P</td>
<td>Angle of second leaflet base (*)</td>
</tr>
<tr>
<td>Q</td>
<td>Ratio of length / width of inflorescence</td>
</tr>
<tr>
<td>R</td>
<td>Ratio of length / width of first leaflet</td>
</tr>
<tr>
<td>S</td>
<td>Ratio of length / width of second leaflet</td>
</tr>
</tbody>
</table>

Rehder, 1940; Uehara, 1961; Kurata, 1973; Lee, 1980; Hara, 1983; Kitamura & Murata, 1984; Ohwi, 1984; Hsu, 1988; Poyarkova, 2000; Obha, 2001)에서 언급한 분류군의 특성을 중심으로 개개기 형질(16개)과 화석 및 모양을 확인하기 위한 형질간비율(3개)을 정리하여 총 19개의 형질을 분석하였다 (Table 1, Fig. 1). 이에 대한 형질은 화석의 점렬 등으로부터 분석을 클러스터링하여 근본성과 형질에 대한 도해는 Nakai (1921a)의 그림을 이용하였다.

각 형질의 종간 혹은 종내 변이의 분석을 위하여 단변량 분석(표준차, 최대치, 평균)을 실시하였으며, 주성분분석 (principle components analysis, PCA)을 통한 상관관계 분석에 이용하였다 (Addinsoft, 2008).

염색체 수 분석: 2008년 전국 13지역(경상남, 대전, 남한산, 수원, 오대산, 문경, 창원, 양산, 평택, 충남, 충북, 창원, 수서)에서 채집한 덩굴무, 진영무, 파 duk무, 맛동무, 맛오름무의 총 30개의 치수를 이용하여 염색체 수를 측정하였다. 먼저 생육이 양상한 치수의 근근은 채취하여 중주수로 근근에 묶은 줄을 제거하였다. 수세 후 흙으로 근근에 묶은 물기를 제거하고 0.1% colchicine에 담가 3시간 전처리를 하였다. 전처리가 끝난 근근은 중주수로 수세한 후 흙으로 물기를 제거하고 Farmer's Fluid [Ethanol (95%); Glacial acetic acid = 3:1]로 4°C 냉장고에서 6시간 고정시켰다. 이때 고정능력을 하향시키기 위해서 ethanol은 미리 4°C로 냉장 보관하였으며, 고정액은 사용 직전에 혼합하였다. 고정된 근근은 중주수로 수세한 후 60°C 1 N HCl에 30시간 해체하고 다시 중주수로 수세한 후 1% aceticarmin에 12시간 염색하였다. 염색된 근근은 실리크라בס트에 수리하고 커버슬라이드를 달고 슬라이드 손으로 헹구는데 둥근 본편이 있어 파편으로 몇 각도에 염색을 제거하고 염색한 근근을 가열하고 후 판찰하였다 (Darlington and La Cour, 1962; Jong, 1969). 혈관이 간편한 분열 중기 세포를 채비한 *Olympus BX51* 세포경을 사용하여 최대 1,000배로 관찰하였다. 염색체 개수는 각 개체별로 최소 5개의 세포에서 관찰한 개수를 근거로 판단하였다 (Jong, 1997).

Table 2. Description of allozymes assayed and buffer systems used for electrophoresis.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Abbreviation</th>
<th>E.C. No.</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase</td>
<td>ACP</td>
<td>3.1.3.1</td>
<td>A</td>
</tr>
<tr>
<td>Phosphoglucoisomerase</td>
<td>PGI</td>
<td>5.3.1.9</td>
<td>A</td>
</tr>
<tr>
<td>Phosphoglucomutase</td>
<td>PGM</td>
<td>5.4.2.2</td>
<td>A</td>
</tr>
<tr>
<td>Catalase</td>
<td>CAT</td>
<td>1.1.1.16</td>
<td>B</td>
</tr>
<tr>
<td>Glutamate dehydrogenase</td>
<td>GDH</td>
<td>1.4.1.2</td>
<td>B</td>
</tr>
<tr>
<td>Glutamate oxaloacetate transaminase</td>
<td>GOT</td>
<td>2.6.1.1</td>
<td>B</td>
</tr>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>IDH</td>
<td>1.1.1.42</td>
<td>C</td>
</tr>
<tr>
<td>Shikimate dehydrogenase</td>
<td>SKDH</td>
<td>1.1.1.25</td>
<td>C</td>
</tr>
<tr>
<td>6-Phosphogluconate dehydrogenase</td>
<td>6PGD</td>
<td>1.1.1.44</td>
<td>C</td>
</tr>
<tr>
<td>Menadione reductase</td>
<td>MNR</td>
<td>1.6.5.2</td>
<td>D</td>
</tr>
</tbody>
</table>

Enzyme Commission Number (Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, 1992)

A = a lithium borate electrode buffer (pH 8.3) used with a tris citrate gel buffer (pH 8.3).

B = a sodium borate electrode buffer (pH 8.0) used with a tris citrate gel buffer (pH 8.8).

C = a tris citrate electrode and gel buffer (pH 6.2).

D = a morpholine citrate electrode and gel buffer (pH 6.1). For more details, refer to Conkle et al. (1982).
에 활용한 동위효소 및 buffer의 명칭은 Table 2에 제시하였다. 모든 효소의 구조와 band의 유전적 해석은 Kephart (1990)의 방법을 따랐다.

유전구조에 대한 분석은 다형성(polynomial)을 보이는 유전자의 비율 (percentage of polymorphic loci; P)과 유전자의 유전자수의 수 (effective number of alleles per locus; Ae), 유전자의 평균 대립유전자 수 (mean number of alleles per locus; A), 평균 총형 이형접합자의 비율 (mean observed proportion heterozygous loci; Ho), 평균 기대 이형 접합자의 비율 (mean expected proportion of heterozygous loci; He)을 측정하였으며 유전적 거리 (Nei, 1978)는 유질 분석 (UPGMA)을 실시하여 점점 간 관계를 도시하였다. 모든 자료의 분석은 BIOSYS-1 program (Swofford, 1981)을 이용하였다.

결 과

다발방 분석: 적절별로 분산분석 (ANOVA)을 실시한 결과 문명도 높은 종자나무는 화석의 기이와 특 (형질 A, B), 종화경의 길이 (형질 C), 소와의 길이 (형질 D), 총화경의 길이 (형질 E), 총화경 사이의 길이 (형질 F), 옥리 (형질 G) 등은 분석한 지질구간과 닮나무 간에는 차이가 없었다.

다변량 분석: 말초종나무와 지질구간의 다변량을 뿐마저 3개 형질 (축소엽 염피작도 (형질 P), 총소엽 염피작도 (형질 O), 총소엽 비율 (형질 R))을 계획한 16개 형질만을 이용하여 주성분분석 (PCA)를 실시하였다. 분석결과 3개의 성분 설명도가 71%로 나타났으며, PC 1, 2, 3에는 각각 42.5, 16.3, 11.7%의 설명도가 있었다. 주성
분석 (Fig. 3)의 PC1축과 높은 상관관계를 보이는 형질로는 화석길이 (형질 A), 화석비 (형질 B), 총화경길이 (형질 C), 소화경길이 (형질 D), 총화경 사이의 길이 (형질 E), 옥리 (형질 F), 옥리 (형질 G) 등이 하위와 일치의 크기에 관련 형질이었으며, PC2는 총소엽비율 (형질 S), 총소
엽비율 (형질 R), 총소엽비율 (형질 H)과 높은 상관관계를 보였는데 모두 일치의 모양과 관계가 있었다. 한편, PC3는 화석
줄기 길이 (형질 D)와 높은 상관관계를 보였다.

말초종나무는 PCA분석 (Fig. 3)에서 매우 유연하게 구분
되었다. 특히 PC 1에서 주요한 차이를 보였는데 말초종
나무는 화석이 크고 (Fig. 2A, 2B, 2D, 2E) 총화경 (Fig. 2C)가 길며 북의 길이 큰 (Fig. 2F) 특징으로 다른 분류군과 구분되

Fig. 2. Box plots summarizing the distributions of the six variables in the four taxa. Boxes show the 25th percentile, median, and 75th percentile, while the + sign indicating the mean; whiskers show the minimum and maximum values. S. racemosa subsp. kamtschatica (K), S. williamsii (W), S. racemosa subsp. sieboldiana (S), and S. pendula (P). A. the length of the inflorescence (mm); B. the width of the inflorescence (mm); C. the length of the peduncle (mm); D. the length of the first pedicel (mm); E. the distance from the end of the peduncle the second pedicel (mm); F. the length of the compound leaf (mm).
Fig. 3. Plots of the first and second principal components (A) and the first and third principal components (B) in the four taxa for morphometric analysis. *S. racemosa* subsp. *kamtschatica* (▲); *S. racemosa* subsp. *sieboldiana* (●); *S. williamsii* (×); *S. pendula* (○).

아다. 한편, 몽나무는 총화경(Fig. 2D)과 화시소기에 짜리고, 화시가 다소 빠르며(Fig. 2B), 층소의 너비가 좁은 특정으로 총화경과 화시소기를 따라, 화시가 다소 좁으며 층 소의 너비가 짜리고 몽나무나무와 구분되었다.

암술머리 색깔과 덮의 모양: 몽나무는 암술머리 색이 제주도의 모든 캐시에서 끼嬉しい 색이 되어 Hara(1983)의 의견과 일치하였다. 반대에 강원도의 지역 몽나무는 모두 녹색색으로 확인되어 암술머리 색이 두 분

表 3. 3개 분류군과 8개 집단의 동위효소 분석 결과와 16개의 유전자수 중 11개의 유전자수(68.8%)가 다형성을 보였고, 3개 집단의 데이터를 이용한 유전자의 다형성의 수는 최대 4개였으며, 평균 다형성 유전자 수는 1.6, 유전다형성(Ho)은 0.184였다.

Nei(1978)의 유전적 동질성(genetic identity)에 근거한 유 전자의 경우, 제주도와 남부 해안(장안선), 용동도 집단의 한 그룹과 강원도(백두산, 태백산, 오대산)의 유전자 수, 수단의 한 그룹으로 크게 2개 집단으로 나뉘었다. 강원도 지역은 지역 몽나무로 분리되며(오대산 지역 예외), 광기를 충등 동의 막출은 모두 몽나무나무와 독립되며, 제주도 지역은 몽나무로 분리되면서 용동도의 몽나무나무와 남해안의 동은 몽나무로 풀렸다(Fig. 4). 주간 특징은 있는 몽나무로의 유전자수는 존재하지 않았다.

염색체 변이에 대한 조사: 전국 13개 지역의 개체에 대해
고찰

Nakai(1917)는 화서가 크고 암매가 작은(직경 3 mm) 특징으로 밀오중나무를 기재하였으나, 본 연구 결과 일부 개체에서는 암매의 크기가 오히려 크고 다른 근간 분류군과는 맨다른 차이를 보이지 않았다(밀오중나무 vs 지령쿠나무, 3-5 mm vs 4-5(5.5) mm). 또한, Lee(1980)가 언급한 거치가 안으로 굴는 특성은 개체 내에서도 발전이 색에 종의 식별형질로 인정하기 어려웠다. 그러나, 화서와 관련된 형질로 화서가 크고(56)80-110(160) mm vs (70)102-150(190) mm vs (15)25-59 (80) mm vs (12)25-70 (98) mm), 총화경이 길이(38)72.5-110(190) mm vs (10)25-70(110) mm 화서가 저지의 특징이 확인되었다(Fig. 5). 밀오중나무는 이러한 꼬리형 화서의 형질을 제외하고는 다른 대체로 각각 논란적이고 분산의 암술머리 기반 개체가 모두 나타나며, 해질해수도 2n=36, 38 로 지령쿠나무와 밀나무의 혼합 형질을 확인하였다.

정작은 북부의 지령쿠나무와 제주도의 밀나무는 화서의 너비와 일부 소야의 수와 너비, 암술머리의 색깔, 팀의 형태에서 두 분류간 일부 차이가 확인되었다. 그러나, 한
반도 내에서 채집된 대부분의 개체를 남부 해안과 경기도
에서 채집된 개체들은 덩나무에서 볼 수 있는 봄은색 암
슬머리를 갖고 화색의 털의 모양도 긴들면서 다소
길게 발달하는 형태가 확인된 반면, 강원도를 제외한 중
부 지역에서는 모두 지령귀나무에서 볼 수 있는 암슬머리
가 녹색이고, 화색의 털이 보존되면서 다소 짧은 형태인 것
이 확인되었다(Fig. 7). 즉, 덩나무와 지령귀나무는 화색의
털의 모양과 암슬머리 색깔이 다르지만, 털과 암슬머리
색깔에서 중간형태의 개체들이 확인되면서 남쪽에 가까
운수록 덩나무 형태에 가깝고, 반대로 북쪽으로 가수록
지령귀나무의 유사한 형태가 확인되었다.

지리적으로 덩나무군생군이 속하는 Boltyosambucus
절은 염색체수에 있어서 유럽 및 중국, 한국(2n=56)과 북
미, 온타리오 아시아 지역(2n=38)으로 크게 나타난다(Boll, 1994).
일본에서는 지리적으로 보여 볼수록 북쪽의 지령
귀나무(subsp. kantschatica)는 2n=38이, 온수 이남지역의
덩나무(subsp. sieboldiana)는 2n=36와 38 두 종류가 모두 존재
하는 듯이 이론에서 보고된다(Darlington and Wylie, 1955;
Ourecky, 1970; Har, 1983; Boll, 1994). 기존에 이런 염색체
수의 차이는 빙하의 영향으로 형성된 것으로 추정하는데
(Housell, 1968; Boll, 1994). 일반적으로 기본형은 2n=36
이었고, 낮은 온도에서 유도된 중부동화체의 CIs(cold
induced regions)가 형성되어 2n=38이 나타난 것으로 보고
있다(Benke-Iseppon and Morawetz, 2000). 이런 이유로, 일
본의 북부에는 2n=38이 우세하고, 남부에는 2n=36과 38이
모두 확인되는 것으로 추정된다. 그러나, 국내에서는 지
령귀나무 혹은 지령귀나무에 더 가까운 형태의 개체에서
의하려 덩나무의 특성인 2n=36이 우세을 보이며 가
족 2n=38이 나타난다. 이런 반도에 조사된 개체에서 나
타나는 염색체수는 일본의 경우와 달리 2n=36의 낭방계
동이 두 유전을 보이는 양상을 띠고 있다.

화색의 특징을 재현한 다른 분류군과 증거로는 암술
머리 색깔, 동위효소, 염색체 수를 종합해서 보면, 밀오름
나무는 암슬머리 색깔은 덩나무와 지령귀나무의 혼합형
이며, 동위효소와 염색체 수의 경우에도 덩나무에 더 가
깝다. 반면 밀오름나무는 반도 내의 다른 개체들에 형태
적으로 보편성을 보이며, 이는 반도 내 분류군들 간
에는 지속적인 유전적 교류가 있었던 반면, 온도의 말오
름나무는 산성지 4기 이후 서식 지역에 고립되어 형태적으로
는 비교적 고착화된 것으로 생각된다(Sun and Stuessy, 1998).

경기도와 황해도 해주지역에는 덩나무 크고, 화색과
완성형으로 매우 넓게 범위이지만, 노출물 전체에 덩나무 없
는 것이 특징인 덩나무(Boltyosambucus Nakai)를 분포한다
(Nakai, 1916). 본 표적 결과, 기존분포 외에도 경기도 해주
에서 채집된 1개의 표본만(SNU A 5422)가 있기에 문명화된
형태를 나타내었다. 본 표본은 화색이 없는 반면, 다른 표본
은 화색이 있는 것으로 보입니다. 화색이 없는 표본에서 표본
여러가 페가 거의 발달하지 않고 산발화시켜 미주마석나무
(S. nigra subsp. camadensis (L.) Bolli)의 오염
정수 경험이 대부분이라는 것이 Lee, Y. N.(1996) 역시 미주
마석나무를 넣은일법으로 잘못 기재하기도 하였다. 일
본 채집된 표본(KH1413986, KH1148402 and KH1147322)
에서도 한 개체 내에서 반부형과 원형형 화색이 동시에
발생된다고, 동일 개체에서 발견된 것은 아니지만 암슬
머리가 봄은색인 개체도 경기도 조치에서 확인된다.

이런 특징은 밀오름나무의 특성과 매우 유사하다.

반도에서 분포하는 덩나무종 중의 특징은 보면서 암슬
머리 색을 제외하고는 덩나무의 형태, 화색의 크기나 크기, 일
모양 등은 모두 다양한 유전적(polygene)에 의해 조절되는 양
적적 형질 특성으로 판단되어, 혹은 중간 집중에 의한
중간 형태의 덩나무가 다양하게 발생하는 정량적 형질의 조합으로
볼 수 있다. 이는 기존에 Nakai(1917, 1921b, 1926)가 국내
에 분포하는 분류군 중 덩나무의 밀오름나무var. glabriscens Nakai, S. sieboldiana var. pubescens Nakai, S.
racemosa var. miquellii Nakai과 S. sieboldiana var. coreana
Nakai와의 형태(S. sieboldiana var. latifolia Nakai)로 발표
한 다수의 표본을 통해 간접적으로 판단할 수 있다. 원
재 제한된 표본 관찰결과, 종의 내부에서의 이런
중간 형태의 확인되기의 [Luo Chang-Chun1361, SNU A 57644
(SNU A)], 또한 Kyoto University 표본관(KYO)의 일본 덩
나무와 지령귀나무 표본을 관찰해 본 결과 일본 내에서도
중간형태의 덩나무가 다수 존재하였다. 실제 Har(1983)는
일본의 덩나무와 지령귀나무를 두었던 분류학적 체계로
나누고, 각 아종별로 6-8개의 종(foms)을 처리하고 있
이 두 종간 중간 형태가 많음을 간접적으로 보여주고 있
다. 이런 현상은 반도 내 극한형도가 아닐수록 일본, 중
국, 러시아 지역 등 동부아시아에서도 확인된다.
Key to the taxa of Sambucus in Korea excluding S. williamsii

1. Inflorescence long and wide ([56]80-111(160) mm × (70)102-150(190) mm), and pendulus with glabrous, peduncle long ([38]72.5-110(190) mm); distributed in Ulleung Island
 —— S. racemosa subsp. pendula

2. Inflorescence short and compact with hairs ([15]25-40(80) mm × (14)30-55(95) mm), peduncle short ([10]25-75(125) mm); widely distributed in Korean peninsula as well as in Jeju Island
 2. Number of leaflet on inflorescence (3)5(7); inflorescence more compact ([14]30-48.5(95) mm), and peduncle long ([22]45-75(125) mm); second leaflet wide ([11]18-30(47) mm); inflorescence with pilose or long papilllose trichome; stigma yellow or rarely red
 —— S. racemosa subsp. kamtschatica
 3. Number of leaflet on inflorescence (5)7; inflorescence compact ([15]35-55(75) mm), and peduncle short ([10]25-35(55) mm); second leaflet narrow ([7]14-21(35) mm); inflorescence with papilllose trichome; stigma red
 —— S. racemosa subsp. sieboldiana

Taxonomic Treatment

Subsp. racemosa
Sambucus praeceps Bernh., Neue Allg. Deutsche Garten-

Korean name: Eu-reop-ddak-chong-na-mu (유림단족나무)

Distribution: Europe and western Asia

Subsp. pendula (Nakai) H. I. Lim and Chin S. Chang, comb. nov.

Korean name: Mal-o-jum-na-mu (말오줌나무)

Our morphometric study in Korea shows that morphologically S. williamsii is closer to S. racemosa subsp. kamtschatica in northern populations than S. racemosa subsp. sieboldiana in Jeju island. Specimens from these populations were placed, somewhat tentatively, in S. racemosa subsp. kamtschatica in the key. The specimens of S. williamsii revealed a confusing melange between two subspecies in Korean peninsula. A further study of S. williamsii in populations of China and Japan may help resolve this taxonomic confusion.

사 사

본 연구는 산림청 교신지자에게 ‘산림과학기술개발사업(과제번호:S210707L1010)’과 임 지자에게 과학재단 (KOSEF) Grand Scholarship (No. S2-2008-000-01850-1)의 지원이 있었습니다.

인용문헌

Appendix. Origin and accession number for specimens utilized for this morphological study. All voucher specimens are deposited at Seoul National University, T. B. Lee Herbarium of The Arboretum (SNUA).

S. racemosa subsp. kamtschatica (지행쿠나무)
SNUA 57585, SNUA 57586, SNUA 57644, LHI 0115, LHI 0117, LHI 0118, LHI 0119, LHI 0120, LHI 0121, LHI 0129, LHI 0944, LHI 0945, LHI 0946, LHI 0947, LHI 0948, LHI 0949, LHI 0950, LHI 0951, LHI 0952, LHI 0953, LHI 0955, LHI 0957, LHI 0960, LHI 0961, LHI 0963, LHI 0964, LHI 0965, LHI 1045, LHI 1046, LHI 1047, LHI 1048, LHI 1050, LHI 1056, LHI 1057, LHI 1058, LHI 1059, LHI 1060, LHI 1061, LHI 1063, LHI 1065, LHI 1066, LHI 1067, LHI 1068, LHI 1069.

S. williamsii (막풍나무)
Chang 1486, SNUA 54230, SNUA 54284, SNUA 54286, SNUA 54287, SNUA 54288, SNUA 54298, SNUA 54308, SNUA 57587, SNUA 57588, SNUA 57589, SNUA 57594, SNUA 57609, JEON 12037, Seo0009, Seo0060, SKY0055, SKY0192, LHI 0111, LHI 0603, LHI 0791, LHI 0793, LHI 0794, LHI 0795, LHI 0799, LHI 0804, LHI 0857, LHI 0858, LHI 0859, LHI 0860, LHI 0862, LHI 0863, LHI 0864, LHI 0865, LHI 0866, LHI 0867, LHI 0868, LHI 0869, LHI 0870, LHI 0871, LHI 0872, LHI 0873, LHI 0874, LHI 0875, LHI 0876, LHI 0877, LHI 0878, LHI 0879, LHI 0880, LHI 0881, LHI 0882, LHI 0883, LHI 0884, LHI 0898, LHI 0910, LHI 0911, LHI 0912, LHI 0913, LHI 0914, LHI 0915, LHI 0937, LHI 0938, LHI 0939, LHI 0940, LHI 0941, LHI 0942, LHI 0943, LHI 0954, LHI 0956, LHI 0958, LHI 0959, LHI 0962, LHI 0975, LHI 0977, LHI 0978, LHI 0979, LHI 0981, LHI 1044, LHI 1049, LHI 1070.

Sambucus racemosa subsp. sieboldiana (막나무)
LHI 0545, LHI 0546, LHI 0547, LHI 0548, LHI 0549, LHI 0550, LHI 0551, LHI 0552, LHI 0553, LHI 0554, LHI 0555, LHI 0556, LHI 0557, LHI 0558, LHI 0559, LHI 0560, LHI 0561, LHI 0562, LHI 0563, LHI 0564, LHI 0565, LHI 0566, LHI 0567, LHI 0568, LHI 0569, LHI 0570, LHI 0571, LHI 0572, LHI 0573, LHI 0574, LHI 0575, LHI 0576, LHI 0577, LHI 0578, LHI 0579, LHI 0580, LHI 0581, LHI 0721, LHI 0722, LHI 0724, LHI 0726, LHI 0727, LHI 0728, LHI 0729, LHI 0730, LHI 0731, LHI 0732, LHI 0735, LHI 0736, LHI 0737, LHI 0738, LHI 0739, LHI 0741, LHI 0742, LHI 0745, LHI 0747, LHI 0748, LHI 0749, LHI 0750, LHI 0751, LHI 0752, LHI 0753, LHI 0755, LHI 0756, LHI 0758.

S. racemosa subsp. pendula (방오줌나무)
LHI 0002, LHI 0003, LHI 0004, LHI 0005, LHI 0006, LHI 0007, LHI 0008, LHI 0009, LHI 0010, LHI 0011, LHI 0012, LHI 0013, LHI 0014, LHI 0015, LHI 0016, LHI 0017, LHI 0018, LHI 0019, LHI 0020, LHI 0021, LHI 0022, LHI 0807, LHI 0808, LHI 0809, LHI 0810, LHI 0811, LHI 0812, LHI 0813, LHI 0814, LHI 0815, LHI 0816, LHI 0817, LHI 0818, LHI 0819, LHI 0820, LHI 0821, LHI 0822, LHI 0823, LHI 0824, LHI 0825, LHI 0826, LHI 0827, LHI 0828, LHI 0829, LHI 0830, LHI 0831, LHI 0832, LHI 0833, LHI 0835, LHI 0836, LHI 0837, LHI 0838, LHI 0839, LHI 0840, LHI 0841, LHI 0844, LHI 0845, LHI 0846, LHI 0847, LHI 0848, LHI 0849, LHI 0850, LHI 0851, LHI 0852, LHI 0853, LHI 0854, LHI 0855.