Fluid infiltration in the lithospheric mantle beneath the Rio Grande Rift, USA: a fluid-inclusion study

MUNJAE PARK¹,², MÁRTA BERKESI²,*, HAEMYEONG JUNG¹,*, and YOUNGWOO KIL³

¹ Tectonophysics Lab, School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
² Lithosphere Fluid Research Lab, Eötvös University, Pazmany Peter setany 1/c, 1117 Budapest, Hungary
³ Department of Energy and Resources Engineering, Chonnam National University, Gwangju, Republic of Korea

*Corresponding authors, e-mail: hjung@snu.ac.kr, martaberkesi@caesar.elte.hu

Abstract: Spinel-peridotite xenoliths, hosted in alkali basalts (~15 Ma), were collected from Adam’s Diggings in the western margin of the Rio Grande Rift (RGR), New Mexico, USA. We selected five representative spinel-peridotite xenoliths, showing abundant fluid inclusions (FIs). Petrographic observations allowed the distinction of two generations of fluid-inclusion assemblages, both hosted in orthopyroxenes, namely Type-1 (earlier) and Type-2 (later). Both types of fluid inclusions were characterized combining microthermometry, high-resolution Raman micro-spectroscopy, and focused ion beam–scanning electron microscopy. The results of this study indicate that the timing and depth of entrapment, as well as the composition of trapped fluid were different between Type-1 and Type-2 FIs. The earlier fluid infiltration (C–O–N–S) happened before or during formation of exsolution lamellae and was trapped as Type-1 FIs in the cores of orthopyroxenes, whereas the later fluid infiltration (C–O–H–S) was trapped as Type-2 FIs after the formation of the orthopyroxene porphyroclasts with exsolution lamellae. The two fluid percolation events in the Adam’s Diggings peridotites indicate the complexity of mantle fluids around the RGR. During ascent of the xenoliths within a basaltic lava, post-entrapment reactions produced magnesite and quartz in Type-1 FIs and magnesite and talc in Type-2 FIs as reaction products of the fluid and its host mineral (orthopyroxene).

Key-words: fluid inclusions; mantle xenoliths; fluid percolation; mantle metasomatism; Adam’s Diggings; Rio Grande Rift

1. Introduction

During the last decades, a number of studies have shown that the lithospheric mantle can be considered an important reservoir for various volatiles species of the C–O–H–N–S system (Taylor & Green, 1988; Holloway & Blank, 1994; Wyllie & Ryabchikov, 2000; Frezzotti & Touret, 2014). Major lines of evidence have been the discovery of (1) volatile-bearing minerals such as amphibole and mica (Dawson & Powell, 1969; Dawson & Smith, 1982) and/or (2) fluid inclusions in upper-mantle xenoliths and peridotite bodies (Török & De Vivo, 1995; Szabó & Bodnar, 1996; Andersen & Neumann, 2001; Frezzotti, 2001; Sachan et al., 2007; Hidas et al., 2010; Berkesi et al., 2012; Frezzotti et al., 2012a). The presence of C–O–H–N–S in fluid inclusions hosted by mantle xenoliths is mainly testified by CO₂-rich fluid, with minor H₂O, N₂, CH₄, CO, and H₂S components, at either room temperature (Roedder, 1965; Murck et al., 1978; Bergman & Dubessy, 1984; Pasteris, 1987; Huraiiova et al., 1991; Andersen et al., 1995; Yamamoto et al., 2002; Sachan et al., 2007; Frezzotti et al., 2010; Kawamoto et al., 2013; Berkesi et al., 2017) or moderately elevated temperatures (Berkesi et al., 2009; Hidas et al., 2010). Moreover, a few studies documented the presence of Cl-rich fluid inclusions in the lithospheric mantle (Izraeli et al., 2001; Konzett et al., 2014), furtherly revealing the complexity of mantle fluids.

The Rio Grande Rift (RGR) is one of the world’s best exposed and most thoroughly studied examples of a continental rift system (Ricketts et al., 2016). Numerous studies have focused on understanding melting and/or metasomatic processes in the mantle by investigating alkali and tholeiitic basalts (Perry et al., 1987), ultrapotassic magmas (Gibson et al., 1993), basaltic melt inclusions (Rowe & Lassiter, 2009; Rowe et al., 2015), pyroxenite xenoliths (Porreca et al., 2006), and peridotite xenoliths (Smith, 2000; Kil & Wendlandt, 2004, 2007; Byerly & Lassiter, 2012, 2015). The latter studies (i.e., peridotite xenoliths) generally used major, trace, and isotopic compositions for tracing and modeling mantle metasomatism. However, fluid-inclusion studies on RGR mantle xenoliths have been lacking so far, despite the fact that fluid/melt inclusions are powerful tools for gaining insight into the nature of cryptic metasomatism (Andersen et al., 1984; Menzies et al., 1987; Belkin & De Vivo, 1989;
Schiano et al., 1992; Schiano & Clocchiatti, 1994; O’Reilly & Griffin, 2000; Szabó et al., 2009; Hidas et al., 2010; Berkesi et al., 2012; Frezzotti & Touret, 2014).

Despite the importance of fluid-inclusion study, to our best knowledge, high-density CO2 inclusions were documented only in xenoliths from Kilbourne Hole, located at the rift axis of the RGR (Roedder, 1965). In this paper, we report a detailed study on fluid inclusions hosted by mantle xenoliths from Adam’s Diggings (located at the western margin of RGR) using microthermometry, high-resolution Raman micro-spectroscopy, and focused ion beam–scanning electron microscopy (FIB–SEM). Finally, we provide a relationship between Type-1 (earlier) and Type-2 (later) fluid inclusion generations and possible mantle metasomatic event(s). Our results shed light on the complexity of mantle fluids beneath the western margin of RGR.

2. Geology and sampling

As one of the world’s principal Cenozoic continental rift systems, the RGR extends for more than 1000 km from Colorado through New Mexico to Mexico (located mostly between the Colorado Plateau and the Great Plains) (Fig. 1). The timing and location of crustal shortening, magmatism, compression, and extension processes in the western USA has been explained by interactions between the North American and Farallon plates (Severinghaus & Atwater, 1990). During the Laramide orogeny (ca. 80–40 Ma), shallow subduction resulted in compression, crustal shortening, and uplift of large regions (e.g., the Colorado Plateau) (Dickinson & Snyder, 1978). Then, Farallon slab delamination (~37 Ma) and rollback (~28 Ma) processes caused an influx of hot asthenospheric mantle beneath the previously cooled continental lithospheric mantle, and a transition from compressional to extensional tectonics, associated with basaltic volcanisms (Humphreys, 2009; Copeland et al., 2011). Additionally, the subducting Farallon plate hydrated the base of the overlying North American Plate (Humphreys et al., 2003). The development of the RGR is considered to consist of an early rifting (Oligocene to middle Miocene; 37–15 Ma) and a late rifting stage (middle Miocene to Holocene; 15–0 Ma). According to Kil & Wendlandt (2007), spinel-peridotite xenoliths from the rift shoulder (Adam’s Diggings) show strong metasomatic characteristics and evidence of partial melting related to the subducted Farallon oceanic plate. The Farallon slab delamination and rollback processes are considered to have occurred during the early rifting process. During the late rifting, localized alkali basalt magmas erupted in the Adam’s Diggings (Fig. 1) brought mantle xenoliths to the surface during the time period between 13 and 6 Ma.

From previously collected spinel-peridotite xenoliths (lherzolites and harzburgites) from the Adam’s Diggings region beneath the western margin of RGR (Fig. 1), we selected five samples with abundant fluid inclusions (Table 1). These xenoliths were the subject of petrological and geochemical studies examining their pressure and temperature conditions (Kil & Wendlandt, 2004) and metasomatic processes (Kil & Wendlandt, 2007); however, a detailed fluid-inclusion study was not available. The xenoliths have porphyroclastic textures and have undergone deformation related to the rifting process (Park et al., 2014). They consist of olivine, orthopyroxene, clinopyroxene, and spinel. In addition, xenoliths ADTM18, ADTM27, and ADTM37 contain 0.1, 4, and 0.1 vol% of phlogopite (Table 1), respectively, as an indicator of modal metasomatism. Exsolution lamellae of clinopyroxene in the orthopyroxene porphyroclasts (Fig. 2a–c) are commonly observed; they were interpreted as having formed prior to xenolith ascent to the surface, indicating a cooling event in the subcontinental lithospheric mantle beneath the western margin of RGR (Kil & Wendlandt, 2004). A summary of
Fluid inclusions in Adam’s Diggings peridotites, Rio Grande Rift

3. Analytical techniques

Double-polished thick sections (about 100 μm thick) were prepared from the xenoliths, and we selected various fluid inclusions close to the surface (<10 μm) for further study. Microthermometric data were collected using a Linkam THMS600 heating-cooling stage mounted on a Nikon Eclipse LV100PL polarizing microscope at the Lithosphere Fluid Research Lab, Eötvös University, Budapest. For calibration, we used the melting point of CO₂ of –56.6°C, with an accuracy of measurement of ±0.1°C. The fluid inclusions were cooled to –150°C, beyond having reached complete freezing, and then were slowly heated until visible total homogenization occurred. The density and minimum pressure values of the fluids were estimated using the FLUIDS software package (BULK & ISOC) (Bakker, 2003).

Micro-Raman analysis was conducted to determine fluid components at the Faculty of Science Research and Instrument Core Facility of Eötvös University, Budapest (ELTE FS-RICF). We used a confocal HORIBA Labram HR (high resolution) 800 spectrometer with Nd-YAG laser (λ = 532 nm) excitation, a 1800 g/mm optical grating, a 50–200 μm confocal hole, a 2–150 s acquisition time, and a 100× objective. The laser spot size (lateral) was measured to be 1.17 μm, and the depth resolution was 1.73 μm (using a 50 μm confocal hole and 100× objective). The laser power was 130 mW at the source and ~50 mW at the sample surface. The spectral resolution was 0.7 cm⁻¹ at 1398.5 cm⁻¹ (full width at half maximum of one neon line). We followed the method of Berkesi et al. (2009) for detecting small amounts of water in fluid inclusions. Data evaluation (background fitting and peak fitting using the Gaussian–Lorentzian function) was carried out using LabSpec software. For mineral and fluid identification, the databases by Frezzotti et al. (2012b) as well as RRUFF (rruff.info) were used.

At ELTE FS-RICF, FIB–SEM analysis was also conducted using a FEI QUANTA 3D FIB–SEM apparatus equipped with both secondary and backscattered electron (BSE) detectors, together with a silicon drift energy dispersive spectrometer (EDS). Fluid inclusions with size in the range 5–25 μm and situated less than 5 μm from the host-mineral surface were selected for FIB–SEM analysis. The accelerating voltage and current of the electron beam were 20 kV and 10 nA, respectively, which allowed major elements having masses ranging from those of Be through O to Ba to be analyzed. Identification of daughter phases was based mostly on their morphology on secondary-electron images and on their brightness on the BSE images, together with examination of EDS spectra. Because of the small size of the daughter phases in the inclusions (1–5 μm), the signals detected by EDS were mixed signals, as X-rays from adjacent areas (host phase and/or other daughter minerals) were also recorded. To distinguish the daughter-phase signal from that of the host mineral, EDS control spectra for the host mineral were acquired in the proximity of and from the same depth as the solid phases after each acquisition of daughter-mineral spectrum. The detailed methodology for this technique was described in Berkesi et al. (2012). The size of FIB slices for fluid inclusions was set to 200 nm.

In order to obtain the major-element composition of core orthopyroxenes and enclosed lamellae, electron microprobe analysis was conducted using a wavelength-dispersive JEOL JXA-8100 electron-microprobe at Gyeongsang National University with instrument settings of 15 kV accelerating voltage, 10 nA beam current, 1 μm beam size, and 20 s counting times. Natural standards were used for the analyses and ZAF correction was applied. Volume percentages of clinopyroxene and spinel lamellae in the lamellae-bearing orthopyroxenes were calculated using one to three representative BSE images for each xenolith (e.g., Fig. 2d). Image resolutions were 254 dpi with a pixel number of 1280 × 960. Corel PHOTO-PAINT v.X8 was used to calculate the pixel numbers of the phases. The pixel number of all clinopyroxene, relative to the total pixel number of the

Table 1. Modal composition, lithology, texture, equilibrium temperature, pre-eruption depth range, and oxygen fugacity in the studied spinel-peridotite xenoliths (Adam’s Diggings) from the western margin of the Rio Grande Rift.

<table>
<thead>
<tr>
<th>Xenoliths</th>
<th>Modal composition (%)</th>
<th>Lithology</th>
<th>Texture</th>
<th>T (°C) (cpx-opx)</th>
<th>T (°C) (Ca-in-opx)</th>
<th>Pre-eruption depth range°F</th>
<th>fO2°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADTM07</td>
<td>Ol 66, Opx 20, Cpx 12, Sp 2</td>
<td>Sp-Hzb</td>
<td>Po</td>
<td>960</td>
<td>980</td>
<td>39–60 km</td>
<td>−0.1812</td>
</tr>
<tr>
<td>ADTM13</td>
<td>Ol 80, Opx 12, Cpx 7, Sp 2</td>
<td>Sp-Lhz</td>
<td>Po</td>
<td>970</td>
<td>960</td>
<td>4.4572</td>
<td></td>
</tr>
<tr>
<td>ADTM18</td>
<td>Ol 67, Opx 24, Cpx 8, Sp 1</td>
<td>Trace</td>
<td>Sp-Hzb</td>
<td>1000</td>
<td>970</td>
<td>6.5392</td>
<td></td>
</tr>
<tr>
<td>ADTM27</td>
<td>Ol 76, Opx 14, Cpx 3, Sp 4</td>
<td>Sp-Lhz</td>
<td>Po</td>
<td>1030</td>
<td>970</td>
<td>0.2212</td>
<td></td>
</tr>
<tr>
<td>ADTM37</td>
<td>Ol 78, Opx 12, Cpx 8, Sp 1</td>
<td>Trace</td>
<td>Sp-Hzb</td>
<td>1010</td>
<td>870</td>
<td>0.4296</td>
<td></td>
</tr>
</tbody>
</table>

ADTM: Adam’s Diggings; Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Sp: spinel; Phl: phlogopite; Hzb: harzburgite; Lhz: lherzolite; Po: porphyroclastic texture.

a Equilibrium temperature (Kil & Wendlandt, 2004) calculated by two-pyroxene and Ca-in-opx of Brey & Köhler (1990) at 15 kbar, st. dev. ± 16°C.

b Pre-eruption depth range based on upper mantle structure and textures (Kil & Wendlandt, 2004).

c Oxygen fugacity values calculated by Ballhaus et al. (1991) at 15 kbar.
whole image, was taken as the volume percentage of clinopyroxene; the same approach was used for spinel and the core of orthopyroxene.

4. Fluid-inclusion petrography

Two generations of fluid inclusions (FIs), all enclosed in orthopyroxene and mostly in deformed porphyroclasts (Fig. 2), were distinguished. Based on our observations, exsolution lamellae are always present in the core of the porphyroclastic orthopyroxenes (Fig. 2a and b), including lamellar spinel (Fig. 2a–d) as well as blebby clinopyroxene (Fig. 2c and d). One fluid-inclusion generation (assemblage) has been identified as either following the orientation of lamellae or adhering to one lamella (Fig. 2c). This fluid-inclusion assemblage (hereafter referred to as Type-1; Fig. 2c and e) is therefore associated to exsolution lamellae, since the lamellae-free rim of the orthopyroxene host does not contain Type-1 FIs. However, numerous lamellae-bearing orthopyroxene porphyroclasts contain no associated fluid inclusions. The size of Type-1 FIs varies between 2 and 10 µm, and these inclusions dominantly show one (liquid) or two visible phases (liquid and solid) at room temperature (Fig. 2c and e). These inclusions do not exhibit visible signs of stretching and/or decrepitation (Fig. 2c and e). Sometimes, they are associated to an opaque solid phase, adhering to the edge of the individual fluid inclusion (Fig. 2e).

Another type of FI assemblage (hereafter referred to as Type-2, Fig. 2f) occurs along healed fractures of orthopyroxene porphyroclasts reaching the edge of the host mineral (Fig. 2b) and crosscutting Type-1 FIs (Fig. 2b). The size of these inclusions varies within a wide range of 10–100 µm (Fig. 2f), and the inclusions contain two (liquid, solid) or three (vapor, liquid, solid) phases at room temperature (Fig. 2f). This type of inclusion is typically decrepitated and connected to numerous small fluid inclusions forming halos (Fig. 2f).

5. Microthermometry

Microthermometry was conducted on both Type-1 (n = 94) and Type-2 (n = 58) fluid inclusions (Table S1, freely available online as Supplementary Material linked to this article on the GSW website of the journal: http://eurjmin.geoscienceworld.org). Detailed microthermometric data are reported in Table 2. Upon progressive heating, the first phase transition detected was the melting of a solid phase in the presence of a vapor bubble to liquid. The melting temperatures (T_m) of this solid phase showed slightly lower ranges in the Type-1 FIs ($−58.0$ to $−57.0{}^\circ$C) than in the Type-2 FIs ($−57.1$ to $−56.8{}^\circ$C; Table 2). These data indicate the predominance of CO$_2$ in the fluid phase within both types of fluid inclusions. Moreover, the melting-point depression from that of pure CO$_2$ (determined to be $−56.6{}^\circ$C) suggests the presence of minor amounts of other components (e.g., Roedder, 1984; van den Kerkhof, 1988; Frezzotti et al., 2002). After complete melting of the solid phase, only the liquid and the vapor phases were observed together, until further heating resulted in homogenization. Attainment of the homogenization temperature (T_h) of the liquid and vapor phases always resulted in a liquid phase. Both Type-1 and Type-2 fluid inclusions showed a wide range of T_h; 42.0 to $−9.5{}^\circ$C and 9.6 to $25.5{}^\circ$C (Table 2 and Fig. 3), respectively. Density for both types was calculated on the basis of T_h (Table 2), using the equation of state developed by Span & Wagner (1996), approximated by the pure CO$_2$ system. The calculated CO$_2$ density (for pure CO$_2$) for the Type-1 and Type-2 FIs was 0.98–1.12 and 0.70–0.86 g/cm3 (Table 2), respectively. Thus, the T_h range and the calculated CO$_2$ density of the two types of FIs clearly differ from each other without any overlap.
Table 2. Details of petrography, microthermometry, and Raman micro-spectroscopy of the studied fluid inclusions.

<table>
<thead>
<tr>
<th>Types (FIA)</th>
<th>Xenoliths</th>
<th>Host minerals</th>
<th>Size (µm)</th>
<th>Shape</th>
<th>Phases (room T)</th>
<th>Fluid phases</th>
<th>T_m (°C)</th>
<th>T_h (°C)</th>
<th>ρ (g/cm³)a</th>
<th>Solid phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1 ($n=94$)</td>
<td>ADTM07</td>
<td>Opx</td>
<td>2–10</td>
<td>Negative crystal shape (L + S)</td>
<td>CO₂–N₂</td>
<td>-57.8 to -57.3</td>
<td>-30.5 to -16.0</td>
<td>1.02–1.08</td>
<td>Magnesite, quartz, sulfide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–N₂</td>
<td>-58.0 to -57.4</td>
<td>-32.5 to -11.0</td>
<td>0.99–1.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–N₂</td>
<td>-57.6 to -57.0</td>
<td>-40.5 to -19.5</td>
<td>1.03–1.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–N₂</td>
<td>-58.0 to -57.2</td>
<td>-42.0 to -15.5</td>
<td>1.01–1.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–N₂</td>
<td>-57.9 to -57.0</td>
<td>-33.3 to -9.5</td>
<td>0.98–1.09</td>
<td></td>
</tr>
<tr>
<td>Type-2 ($n=58$)</td>
<td>ADTM07</td>
<td>Opx</td>
<td>10–100</td>
<td>Negative crystal shape (L + S) or (V + L + S)</td>
<td>CO₂–H₂O</td>
<td>-57.0 to -56.8</td>
<td>9.8 to 22.6</td>
<td>0.74–0.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–H₂O</td>
<td>-57.1 to -56.9</td>
<td>13.6 to 25.5</td>
<td>0.70–0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–H₂O</td>
<td>-57.1 to -56.8</td>
<td>11.5 to 21.5</td>
<td>0.76–0.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–H₂O</td>
<td>-57.0 to -56.8</td>
<td>9.6 to 22.8</td>
<td>0.74–0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADTM37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO₂–H₂O</td>
<td>-57.1 to -56.9</td>
<td>12.5 to 23.6</td>
<td>0.73–0.84</td>
<td></td>
</tr>
</tbody>
</table>

n: number of measurements; Opx: orthopyroxene; L: liquid; S: solid; V: vapor; T_m: melting temperature; T_h: homogenization temperature.

a The CO₂ density in fluid inclusions calculated by the FLUIDS software package (BULK) (Bakker, 2003).

Fig. 3. Histogram showing homogenization temperatures (T_h) for two distinct CO₂-rich fluid-inclusion generations (Type-1 and Type-2 FIs). n, number of measurement for each fluid inclusion.

6. Raman microspectrometry

For the five selected spinel-peridotite xenoliths, micro-Raman analysis was conducted to identify the compositions of the fluid and solid phases more precisely in each type of fluid inclusions (Type-1, $n=50$; Type-2, $n=50$) (Table S1). The results confirmed the data provided by microthermometry, namely, that the Type-1 and Type-2 FIs contain dominantly CO₂. These two types of fluid inclusions were always detected with a CO₂-rich liquid phase (the Fermi diad bands; Raman shift values at ~ 1281 and ~ 1386 cm$^{-1}$ for Type-1 FIs and ~ 1282 and ~ 1386 cm$^{-1}$ for Type-2 FIs) (Fig. 4a and c).

6.1. Type-1 fluid inclusions

Due to the attainable spectral resolution of the Raman instrument, we could detect both the nitrogen linked to the fluid phase as well as that in the air (following Berkesi et al., 2017). This was represented by a kind of “doublet” peak in the spectral region around 2330 cm$^{-1}$ (Fig. 4b). Nitrogen in the air was also detected when measuring the sample off, but close to the inclusion, at the same depth in the sample and with the same parameters as used for the inclusion. The nitrogen peak that was found when measuring only fluid inclusion always appeared at lower wavenumber than that of nitrogen in the air (Fig. 4b): ~ 2327.3 cm$^{-1}$ in the fluid and ~ 2330.7 cm$^{-1}$ in the air (Fig. 4b).

An opaque solid phase in Type-1 FIs (Fig. 2e) having a Raman peak at 472.5 cm$^{-1}$ (Fig. 4a) was most likely a sulfide phase. The characteristic peaks of a Mg-carbonate (magnesite) (738.2 and 1095.5 cm$^{-1}$) were also found (Fig. 4a).

6.2. Type-2 fluid inclusions

For the Type-2 FIs, peaks of dissolved H₂O in CO₂ (at ~ 3636.1 cm$^{-1}$) are clearly apparent (Fig. 4d). Figure 4d also demonstrates that the H₂O peak intensity increased with increasing temperature, a result similar to that described by Berkesi et al. (2009) for detection of small amounts of H₂O in CO₂-rich FIs. Aside from the dissolved H₂O peak, the Type-2 FIs also showed the presence of a OH-bearing solid phase, namely talc (~ 3676.2 cm$^{-1}$ in Fig. 4d). Similar to Type-1 FIs, the presence of magnesite was also observed (peaks at 212.2, 329.2, and 1094.4 cm$^{-1}$ in Fig. 4c).

7. Focused ion beam–scanning electron microscopy

We applied FIB–SEM to observe the morphology and composition of solid phases in unexposed fluid inclusions by using gradational milling steps.

In the Type-1 FIs ($n=6$ from xenoliths ADTM18, 27 and 37; Table S1), an opaque phase (Fig. 2e) with a size of 1–3 µm and subhedral shape (Fig. 5a) appeared in bright contrast compared to the host orthopyroxene in BSE images. The EDS analysis indicated that this phase is an Fe (Ni–Cu–Co)-bearing sulfide bleb (Fig. 5a and f). Magnesite and quartz, with sizes of 1–1.5 µm and euhedral to subhedral shapes, were also identified (Fig. 5a and b). Generally, minerals in Type-1 FIs are in direct contact with the host orthopyroxene (Fig. 5a and b).
Daughter phases from Type-2 FIs \((n = 6\) from xenoliths ADTM18, 27 and 37) (Table S1) differ from those of Type-1 FIs and show higher complexity. Magnesite with euhedral shape and large size \((3–4 \mu m)\) (Fig. 5c and e) was the only mineral found in direct contact with the wall of the host orthopyroxene (Fig. 5c–e). Moreover, the magnesite crystal is covered by a glass layer (Fig. 5e and k), which is similar to the findings of Berkesi et al. (2012). There is also a \(3 \mu m\) size fibrous phase, which is generally attached to magnesite (Fig. 5c and d), and is likely the talc also recognized beforehand by micro-Raman analysis (Fig. 4d). Additionally, a \(1–2 \mu m\) subhedral Ca- and S-bearing solid phase was detected. Considering the fact that this phase is dark on the BSE image, we suggest that it is a Ca-bearing sulfate, probably anhydrite (Fig. 5c and h). In addition, a \(2–3 \mu m\) subhedral Fe–(Ni)-oxide was also detected (Fig. 5c and i) based on its brightness in the BSE image. These two phases, Ca-sulfate and Fe–(Ni)-oxide, appear together on the wall of fluid inclusions (i.e., surface of orthopyroxene) and are completely covered by magnesite (Fig. 5c). In addition, within Type-2 FI, a thin layer (up to \(500 \text{ nm}\)) with vesicles on its surface are typically present on the inclusion wall and partly cover the daughter minerals (Fig. 5c–e).

8. Discussion

As petrographic and compositional characteristics of Type-1 and Type-2 FIs are similar in all investigated samples (Table 2), we discuss the observations and data obtained with no special attention to the enclosing xenolith.

8.1. Entrapment of fluid inclusions

The negative crystal shape of fluid inclusions (Fig. 2) suggests textural equilibrium between the fluid and its host phase (Roedder, 1984; Viti & Frezzotti, 2000). The development of negative crystal shape through maturation (Bodnar et al., 1989) likely takes a longer period of time than the duration of transport of the xenoliths from the upper mantle to the surface (Roedder, 1984; Szabó & Bodnar, 1996; Dégi et al., 2009). Moreover, the rapid pressure change during uplift does not favor the formation of negative crystal morphology (Bodnar et al., 1989). Thus, the possibility of the entrapment of the studied fluid inclusions by alkali basalt during transport to the surface is unlikely.

Although both FI types can be regarded as having been entrapped originally at mantle depth, on the basis of their petrographic features, using the terminology and logic of Roedder (1984) and Van den Kerkhof & Hein (2001), Type-1 FIs seem to have better preserved their original fluid — on the basis of their high density (between 0.98 and \(1.12 \text{ g/cm}^3\); Table 2) and the absence of petrographic features indicative of significant re-equilibration. In contrast, Type-2 FIs have CO\(_2\) densities between 0.70 and \(0.86 \text{ g/cm}^3\) (Table 2) and show strong petrographic
evidence for re-equilibration to lower densities by partial fluid leakage (Fig. 2f). Type-2 FIs could have decrepitated more easily because they are larger than Type-1 FIs (2–10 μm for Type-1 and 10–100 μm for Type-2; Table 2). A positive correlation between size and appearance of decrepitation as a result of brittle deformation or stretching as a plastic failure in quartz- and olivine-hosted fluid inclusions has been shown experimentally (Hall & Bodnar, 1989; Wanamaker & Evans, 1989; Yamamoto et al., 2011; Campione et al., 2015). Petrographic observations also indicate that Type-1 and Type-2 FIs were trapped at different times, because Type-2 inclusion trails commonly crosscut Type-1 inclusions, reaching the edge of the host orthopyroxene (Fig. 2b). Type-1 inclusions thus represent an “older” fluid generation entrapped prior to or during the formation of exsolutions in the core of orthopyroxene, whereas Type-2 inclusions represents “younger” fluids entrapped after the formation of exsolution lamellae in orthopyroxene porphyroclasts.

8.2. Temperature estimate for fluid-inclusion entrapment

The occurrence of exsolution lamellae (of clinopyroxene and spinel) in the core of orthopyroxene porphyroclasts is a common phenomenon in mantle xenoliths beneath the studied area (Fig. 2a–d), indicative of a cooling stage during the evolution of this lithospheric mantle sector (Kil & Wendlandt, 2004). This is the general explanation for such exsolved minerals in mantle xenoliths (e.g., Bedini et al., 1997; Spengler et al., 2012; Pintér et al., 2015) because the strong T-dependence of Ca-isopleths in orthopyroxene (e.g., Gasparik, 2000) requires clinopyroxene lamellae and associated Al-mineral phases (in our case spinel) to be formed during cooling (Spengler et al., 2012).

Exsolution lamellae are formed by two possible genetic mechanisms: (i) nucleation and growth within the host crystal or (ii) spinodal decomposition (McCallister & Yund, 1977; Putnis, 1992; Sánchez-Muñoz et al., 2016). However, these solid-state mechanisms do not necessarily allow fluid entrapment in the orthopyroxene. We suggest that the entrapment of Type-1 FIs started either before or during the formation of the exsolution lamellae. Type-2 FIs, which are crosscutting the lamellae and Type-1 FIs, were trapped in their host orthopyroxene after the lamellae were formed.

Considering this sequence of events (fluid inclusions and lamellae formation), “paleo” orthopyroxene compositions (before exsolution, $\text{Opx}_{\text{paleo}}$) were calculated using the volume of the lamellae relative to their host orthopyroxene (similar to methods described in Bedini et al., 1997). In the studied orthopyroxene porphyroclasts, the obtained ranges are: 96.97–98.04 ± 0.05 vol% for orthopyroxene core (where lamellae occur), 1.69–2.37 ± 0.05 vol% for clinopyroxene lamellae, and 0.28–0.52 ± 0.05 vol% for spinel lamellae (Table 3). Applying the given vol%, $\text{Opx}_{\text{paleo}}$ compositions show a slight increase in Al_2O_3, CaO, Cr_2O_3, and Na_2O (Table 3). Owing to the lack of known
clinopyroxene composition before lamellae formation, it was not possible to apply a two-pyroxene thermometer. Instead, the Ca-in-opx thermometers developed by Brey & Köhler (1990) and Nimis & Grütter (2010) were applied, both set at 1.5 GPa. As a result, “paleo” temperatures (before exsolution of clinopyroxene and spinel, \(T_{\text{paleo}} \)) as well as “neo” temperatures (after exsolution of clinopyroxene and spinel, \(T_{\text{neo}} \)) were calculated (Table 3). The \(T_{\text{paleo}} \) values vary between 1056–1094 (±16 °C) using the method of Brey & Köhler (1990) and between 1051–1093 (±25 °C) using the method of Nimis & Grütter (2010). Values of \(T_{\text{neo}} \) are lower, 952–969 (±16 °C) using the method of Brey & Köhler (1990) and 931–951 (±25 °C) using the method of Nimis & Grütter (2010). As a consequence, minimum temperature conditions for Type-1 FI entrapment are determined by \(T_{\text{neo}} \). Entrapment temperature for Type-2 can rather be estimated to fall between \(T_{\text{neo}} \) and the latest equilibrium temperatures in the xenoliths at mantle depth. The latter one has already been calculated by Kil and Wendtland (2004) using the two-pyroxene geothermometer (developed by Brey & Köhler, 1990; Table 1). On this basis, entrapment temperature for Type-2 was in the interval between 930 and 1030 (±16 °C).

8.3. Type-1 FIs

Fluids in the Type-1 FIs likely contain small amounts of \(N_2 \) (because of the low-intensity peak on the Raman spectrum, Fig. 4b) that can be responsible for the \(T_m \) melting-point depression (van den Kerkhof, 1988). High-density fluid inclusions show that \(CO_2 \) is common in mantle fluids (Frezzotti et al., 2002, 2010, 2012; Berkesi et al., 2009, 2012) and that \(N_2 \) may also be a minor but common component in subcontinental lithospheric upper-mantle fluids (Berkesi et al., 2017). These authors calculated \(N_2 \) concentrations ranging from 0.3 to 1.8 mol% in extremely high-density (≥1 g/cm³) fluid inclusions from xenolith sample ADTM27, corresponding to Type-1 FIs of this study. These results are in good agreement with our observations that nitrogen in a free fluid phase at spinel-lherzolite stability conditions may be present as \(N_2 \) (e.g., Andersen et al., 1995; Berkesi et al., 2017). According to Frost & McCammon (2008), at spinel-lherzolite stability, the oxygen fugacity is within ±2 log units of the fayalite–magnetite–quartz (FMQ) buffer, consistent with the presence of \(N_2 \) as \(N_2 \) (and of \(H_2O \)) in the \(H–N–O \) system (Watenphul et al., 2010). In our study, precise \(N_2 \) contents could not be measured because of the complexity of the solids present within the inclusions (magnesite, quartz, and sulfide; Fig. 5a and b). However, the Raman intensity ratios of the fluid components (\(CO_2 \) and \(N_2 \)) suggest similarly low \(N_2 \) content (≤3 mol%) in the studied Type-1 fluid inclusions.

In general, the redox conditions provide the main control on the liberation of \(N_2 \) from the convecting mantle (Smith et al., 2014) by the oxidation of \(NH_4^+ \) in hydrous silicates (mostly phlogopite) to mobile \(N_2 \). Previous petrographic observations (Kil & Wendtland, 2004) documented the occurrence of phlogopite in the ADTM xenoliths (ADTM18, 27, and 37; Table 1); this mineral could be regarded as a source of nitrogen potentially liberated during a precedent heating event, as a consequence of lithosphere attenuation during early rifting (Kil & Wendtland, 2004). In this scenario, \(H_2O \) is also expected in the fluid phase. It is important to emphasize that the previous existence of \(H_2O \) cannot be excluded even though Type-1 FIs were found to be water-free, because of possible diffusive loss via nano-cracks (e.g., Viti & Frezzotti, 2000), this even if the inclusion do not show any petrographic evidence of re-equilibration. This point, however, must be clarified by further investigation.

8.4. Type-2 FIs

As shown above, the Type-2 event represents a later-stage fluid infiltration that was trapped after the formation of lamellae in the orthopyroxene porphyroclasts. In contrast to the Type-1 FIs, Type-2 FIs are \(H_2O \)-bearing and contain numerous phases (Fig. 5c) such as a silicate glass film (Fig. 5e) covering magnesite, talc, Ca-sulfate (likely anhydrite), and Fe–Ni oxide. The presence of talc and sulfate is a common feature in \(CO_2–H_2O \) fluids (Frezzotti et al., 2010).

Silicate glass films in mantle fluid inclusions from the Central Pannonian Basin were previously reported by Berkesi et al. (2012), who concluded that silicate melt components were dissolved in the \(H_2O \)-bearing \(CO_2 \)-rich fluid at entrapment. Moreover, various trace elements are considered to be dissolved in \(H_2O \)-bearing \(CO_2 \)-rich fluids that formed via silicate (andesitic) melt/volatile immiscibility at high pressure and temperature (Szabó et al., 2009; Hidas et al., 2010). It has also been suggested that, following this phase separation, melt and fluid evolved along different paths and could have migrated separately at upper-mantle depth, interacting with the peridotitic rocks. We infer that Type-2 FIs may originate from such processes, whereby only the separated fluid phase was trapped in the studied rocks. During cooling, probably after eruption of the basaltic host, minor amounts of dissolved silicate melt quenched onto the wall of the inclusion as proposed by Hidas et al. (2010).

8.5. Possible source of the fluids related to metasomatic evolution

Previous petrologic and major- and trace-element mineral-chemistry data indicated three metasomatic events beneath Adam’s Diggings (referred to as MM1, MM2, and MM3, following Kil & Wendlandt, 2007). The timing of MM1 (the first enrichment process) is thought to precede the rifting stage (older than 37 Ma), when the upper mantle beneath the RGR was heterogeneous with MORB- and OIB-type (old subducted slab) mantle components (Frey & Prinz, 1978; Kyser & Rison, 1982; Leeman, 1982; Roden et al., 1988). The MM1 event may have been related to K-enriched fluid/melt originating from an old subducted slab (the Farallon plate) and likely precipitated a hydrous mineral (i.e., phlogopite) (Kil &
<table>
<thead>
<tr>
<th>Sample</th>
<th>ADTM07</th>
<th>ADTM13</th>
<th>ADTM18</th>
<th>ADTM27</th>
<th>ADTM37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vol% Opx</td>
<td>97</td>
<td>97</td>
<td>98</td>
<td>98</td>
<td>97</td>
</tr>
<tr>
<td>Vol% Cpx</td>
<td>2.18</td>
<td>2.25</td>
<td>1.69</td>
<td>1.77</td>
<td>2.37</td>
</tr>
<tr>
<td>Vol% Sp</td>
<td>0.52</td>
<td>0.29</td>
<td>0.28</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>Mineral</td>
<td>Opx</td>
<td>Sp</td>
<td>Cpx</td>
<td>Opx</td>
<td>Sp</td>
</tr>
<tr>
<td>SiO₂</td>
<td>56.54</td>
<td>53.20</td>
<td>55.06</td>
<td>52.13</td>
<td>52.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.06</td>
<td>0.07</td>
<td>0.12</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>1.94</td>
<td>26.88</td>
<td>3.38</td>
<td>2.10</td>
<td>3.45</td>
</tr>
<tr>
<td>FeO</td>
<td>5.72</td>
<td>17.13</td>
<td>3.05</td>
<td>5.72</td>
<td>6.96</td>
</tr>
<tr>
<td>MnO</td>
<td>0.16</td>
<td>0.24</td>
<td>1.62</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>CaO</td>
<td>0.70</td>
<td>0.02</td>
<td>21.04</td>
<td>1.14</td>
<td>0.68</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.07</td>
<td>0.04</td>
<td>1.62</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>Neo</td>
<td>121</td>
<td>963</td>
<td>1091</td>
<td>104</td>
<td>96</td>
</tr>
<tr>
<td>Paleo</td>
<td>136</td>
<td>944</td>
<td>1055</td>
<td>110</td>
<td>944</td>
</tr>
<tr>
<td>Fluid inclusions in Adam’s Diggings peridotites, Rio Grande Rift</td>
<td>951</td>
<td>1089</td>
<td>951</td>
<td>1055</td>
<td>951</td>
</tr>
</tbody>
</table>

Table 3. Representative electron microprobe data with calculated paleo and neo temperatures in the studied samples.
Inclusion. For details, see text. (Online version in color.)

10 Park et al.

Sp, spinel lamellae; Cpx, clinopyroxene lamellae; FI, fluid inclusion. For details, see text. (Online version in color.)

Fig. 6. Possible scenario of fluid invasions related to metasomatic events and thermal history beneath the Adam’s Diggings. (a) Protogranular (non-deformed) orthopyroxene grain which has experienced MM1 event prior to rifting. (b) After MM2 and possibly simultaneous deformation process (Kil & Wendlandt, 2004; Park et al., 2014), Type-1 FIs are entrapped before or during formation of exsolution lamellae (induced by cooling). (c) After cooling, Type-2 FIs are trapped related to MM3 event. (d) Schematic drawing of room-temperature phase relations of both FI generations (Type-1 and 2). MM1–MM3: three mantle metasomatic events in the Adam’s Diggings (Kil & Wendlandt, 2007); Opx, orthopyroxene; Sp, spinel lamellae; Cpx, clinopyroxene lamellae; FI, fluid inclusion. For details, see text. (Online version in color.)

2012a) by one of the two following reactions:

\[
\text{MgSiO}_3 \text{ (orthopyroxene)} + \text{CO}_2 \text{ (fluid)} = \text{MgCO}_3 \text{ (magnesite)} + \text{SiO}_2 \text{ (quartz)} \quad (1)
\]

\[
4\text{MgSiO}_3 \text{ (orthopyroxene)} + 2\text{CO}_2 \text{ (fluid)} + \text{H}_2\text{O} \text{ (fluid)} = 2\text{Mg}_2\text{Si}_4\text{O}_{10} \text{(OH)}_2 \text{ (talc)} + 2\text{MgCO}_3 \text{ (magnesite)} \quad (2)
\]

These carbonation reactions occur at temperatures below ~700–600 °C for variable pressures (Berkesi et al., 2012; Frezzotti et al., 2012a). The type of reaction products is influenced by the \text{H}_2\text{O} content of the trapped fluid, and the \text{P–T} conditions of eruption (Frezzotti et al., 2012a). Type-1 and Type-2 FIs must have experienced the same eruption conditions but Type-2 FIs show clear evidence for decrepitation, in contrast to Type-1 FIs (Fig. 2). Larger Type-2 inclusions decrepitate easier and this could result in decreased fluid density within the inclusion cavity that enables talc to precipitate. By whatever mechanism, the occurrence of talc in Type-2 FIs indicates minimum \text{X}_{\text{H}_2\text{O}} of about 0.3 (Frezzotti et al., 2012a). We assume lower \text{X}_{\text{H}_2\text{O}} for Type-1 as no evidence of \text{H}_2\text{O} was found.

9. Concluding summary

Fluid inclusions in mantle xenoliths from the western margin of RGR (Adam’s Diggings) have been carefully investigated to understand the origin and composition of percolating fluids at mantle depth. Two distinct generations of fluid inclusion (Type-1 and Type-2), both entrapped in orthopyroxene porphyroclasts at different time, revealed the compositional heterogeneity of percolating fluids. Type-1 FIs (C–O–N–S) were trapped from an earlier fluid percolation stage, before or during a cooling event that might have been related to the thermal relaxation after lithosphere thinning. Type-2 FIs (C–O–H–S) represent later-stage fluid infiltration likely related to the latest metasomatic event recorded in the xenoliths. Overall, this study provides a better insight to understand the relationship between multiple fluid infiltrations and metasomatic events in the lithospheric mantle beneath the RGR.

Acknowledgements: The authors would like to thank Csaba Szabó for his support and helpful discussions. We thank both Gábor Varga and Kitti Ratter (Faculty of Science Research and Instrument Core Facility of Eötvös University, Hungary) for the FIB–SEM analyses. Careful review of Doug Smith and an anonymous reviewer as well as the editorial handling (Elisabetta Rampone) helped to greatly improve the manuscript. This study was supported by the Mid-career Research Program through NRF grants to Haemyeong Jung funded by the MEST (NRF 2017R1A2B2004688), the Fellowship for Fundamental Academic Fields in Seoul National University to Munjae Park, the Bolyai Postdoctoral Fellowship Program and the Hungarian Scientific Research Fund (Project No. 105410) to Marta Berkesi. Munjae Park was also supported by joint research work between Seoul National University (NRF 2015R1A2A1A15052305) and Eötvös University (funded by TÁMOP-4.2.1/B-09/1/KMK-2010-0003).

References

Received 2 October 2016
Modified version received 1 February 2017
Accepted 29 March 2017